Medical Considerations in the Management of Pediatric Hearing Loss

Oliver F. Adunka, MD, FACS; Craig A. Buchman, MD, FACS

Washington University School of Medicine in St. Louis Childre St. Louis

Introductions & Disclosures

• Oliver F. Adunka, MD, FACS

THE OHIO STATE UNIVERSITY
WEXNER MEDICAL CENTER

- Equity Interest
 - Advanced Cochlear Diagnostics, LLC
- Consulting
 - Advanced Bionics Corporation
 - Spiral Therapeutics
 - AGTC Incorporated
 - MED-EL Corporation

• Craig A. Buchman, MD, FACS

School of Medicine in St. Louis

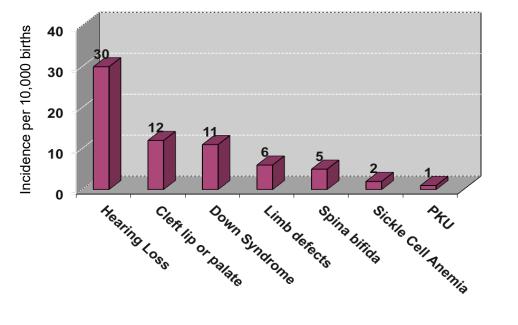
- Equity Interest
 - Advanced Cochlear Diagnostics, LLC
- Consulting
 - Advanced Bionics Corporation
 - Cochlear Corporation
 - Envoy Corp
 - LotaMotion, Corp
 - MED-EL Corporation

Outline

- Overview
 - Potential burden of HL
 - Educational aspects
 - NIHS data
- Medical & surgical w/u
- Case presentations

Otolaryngology Training in NIHS

- Not part of the curriculum of most residencies
- Learned out of necessity and interest


Pediatric HL – The Problem

- Most Common birth defects
- Incidence Estimates
 - 3-4/1000 have HL (12,000-16,000 in US/yr)
 - 1:1000 have severe to profound HL
 - ~4000 children in US in 2012
- More than doubles by school age
 - Between 5 to 7 in 1000 with moderate or worse bilateral hearing loss •
 - 20.3% of children > 12 yo (NHANES 2001-8)
 - Increases to 15 25 in 1000 when mild bilateral and any degree of unilateral hearing ٠ loss are included

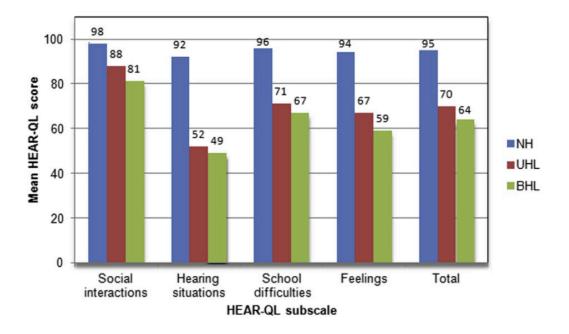
http://www.asha.org/aud/articles/hearlosschild.html

Pediatric HL – The Problem

www.Infanthearing.org

🚺 🐝 🧱 Childre/ ไs

Pediatric HL – The Problem


Impact

- Sound awareness
- Speech understanding & language development
- Educational Impact
- Employment opportunities & earning potential
- ~\$1 million per child lifetime costs when untreated
 - 35% direct and 65 % indirect lost earning potential, etc...

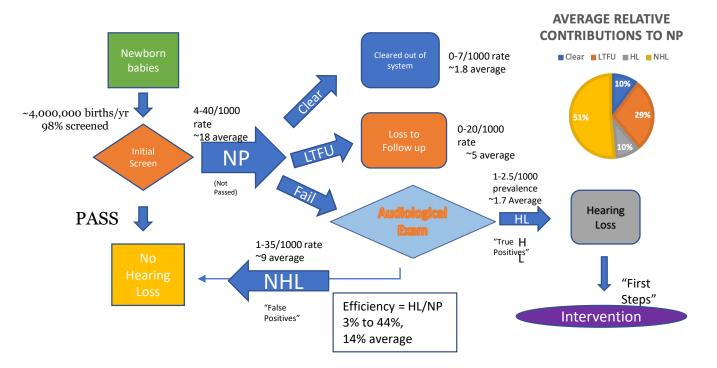
36% Infant Candidates receive CI in US!

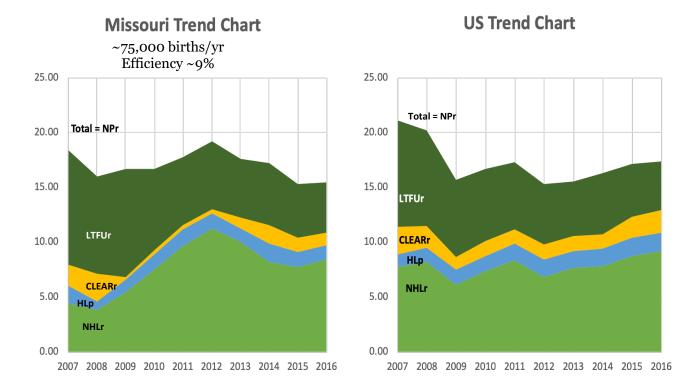
Pediatric Hearing Loss Impact

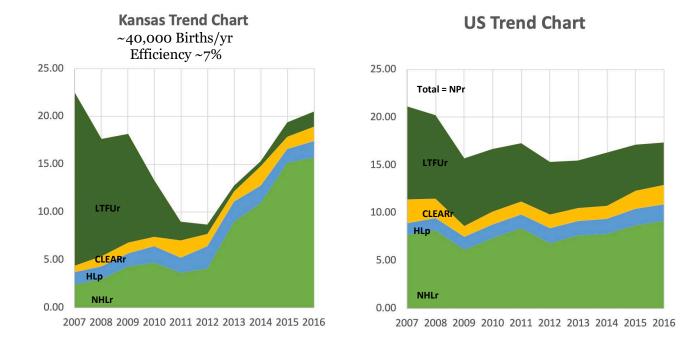
🚺 🐝 🧱 Childre/ Vs

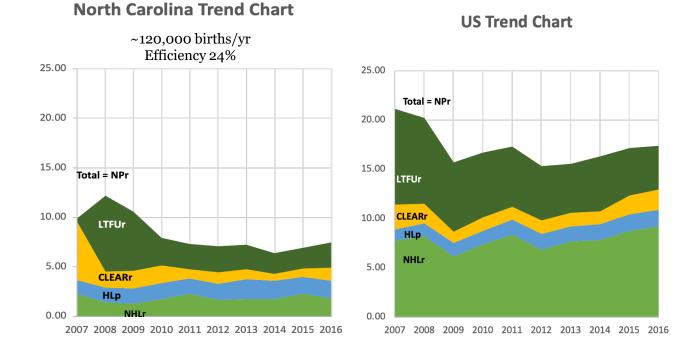
Rachakonda et al, 2014

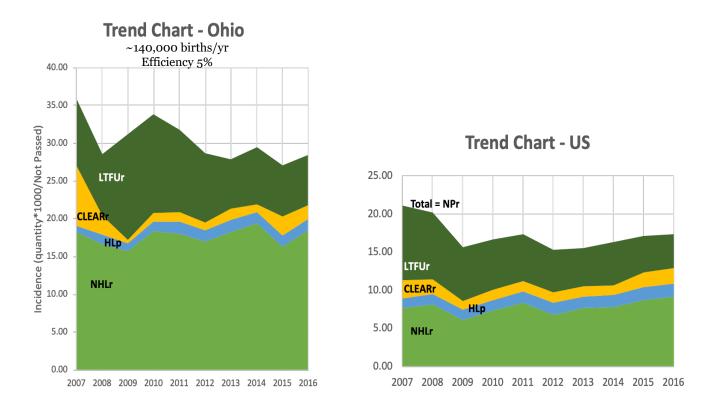
What is the answer?

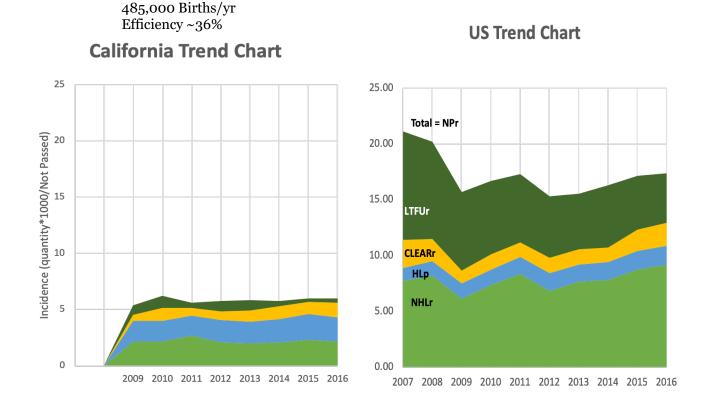

- Early Identification
 - Coupled with full options disclosure
- Diagnosis
 - Type of Hearing loss
 - Medical diagnosis matters
- Family-Centered Intervention
 - Good signal (Amplification, CI, Sign Language)
 - Appropriate intervention window
 - Education
 - Many children outside of local setting


🚺 🐝 🤮 Childre 🥂


Newborn Infant Hearing Screening (NIHS)


- NIHS was recommended by NIH consensus in 1993
 - Identifiable and Treatable
- All states now have legislation of NIHS
 - Not all are universal
 - Not all are fully implemented
- Early Hearing Detection and Intervention (EHDI)
 - Goals of the EHDI Process
 - Final screening by **1 month**
 - Identification of permanent hearing Loss by 3 months
 - Intervention by 6 months
 - Is a multidisciplinary endeavor


Summary - Early Hearing Loss Detection and Intervention Process using 2016 data (49 states)



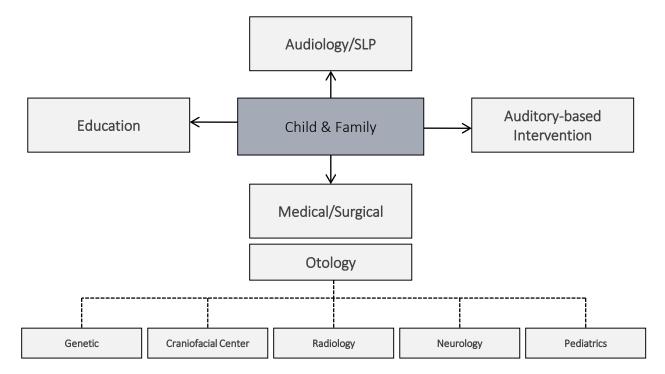
What's going on here?

- Higher "No Pass Rates" do not identify more HL
 - Increases Resource Utilization and Costs
 - Possible Causes
 - Technology differences
 - Implementation
 - Protocols for passing children
 - Follow up screening protocols
- We should learn from Good and Bad States
 - High efficiency with low NPr
 - Good: California, North Carolina, Wisconsin, Utah, Nebraska,
 - Bad: Texas, Ohio, West Virginia, Louisiana, Tennessee, ND

Beyond the Newborn Screen

- Lost- to Follow-up remains a Problem
 - Home births
 - Across state borders
 - Screening not completed before discharge
 - Transfer between hospitals
 - Lack of safety net system (tracking and visits)
 - Physician reassurance
 - Non-compliance

Ripe for Research



Medical & Surgical Work-Up

Hearing Loss Team

Timeline

Newborn infant hearing screening Birth	 Diagnostic ABR ASSR, OAE History & Physical Medical Evaluation EKG Imaging Genetic Testing Early intervention Services Auditory-based Therapy Initiation of HA Trial 	 Behavioral audiometric Testing Confirmation of Thresholds Auditory-based Therapy Consider CI Evaluation Evaluation of HA Trial 	 Cochlear Implantation/HA? Auditory-based Therapy
0 Day	2-4	6-9	10-14 <i>Time</i>
1-7	Months	Months	Months

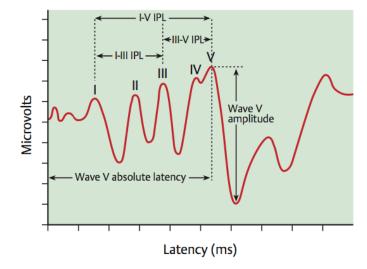
The Role of the Pediatrician

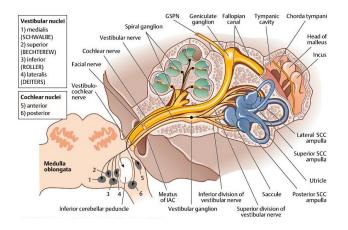
- Know the Incidence and Consequences of untreated HL
- Confirm Screening Status
 - Technology used and Number of screens,
 - Risk profile (NICU vs Well-baby, family history, other disease, etc)
- Counsel the needs for follow-up
 - audiology, otolaryngology, speech pathology
- Know presentation of delayed loss
 - Developmental Milestones related to HL
- Early referral for otitis media in setting of failed screening
 - Don't follow guidelines in this situation!
- Vaccinations related to Hearing Loss

Office Re-Screening

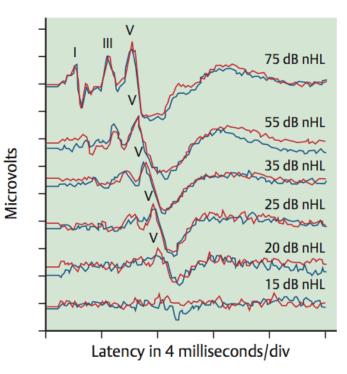
- Should be Automated Technology
 - Know the equipment well
 - AABR, OAEs, Tympanometry, other
 - Calibration and maintenance
- Screeners must be trained
- NICU children should not be re-screened in office
 - Direct referral to Audiology/Otolaryngology
- Must report to state database EHDI required

Pediatric Audiology Issues


- How sure are about the degree of hearing loss?
 - Are electrophysiological results sufficient?
 - Are the behavioral thresholds accurate?
- Amplification adequate?
- Auditory Neuropathy Spectrum Disorder Auditory and biological uncertainty



- Comprehensive evaluation rather than relying on one test result!
- Lots of team discussion!


Normal ABR

🚺 🐝 🧱 Childre/Vs

Threshold Estimation

🚺 🐝 🧱 Childre/ I's

Actionable ABR

- Threshold estimates for 4 frequencies 500, 1000, 2000, 4000 Hzfor each ear!
- Bone conduction ensure it's not conductive
- Amplification should NOT be attempted w/o a complete dataset!

ABR Timeline

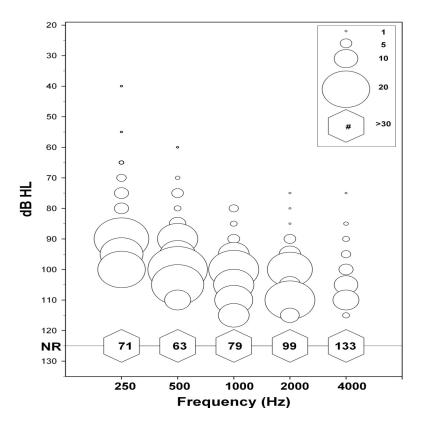
- No actionable data
 - Following **two** attempts
 - Child ≥ **3 months**

Proceed with sedated study!!

• National goal (JCIH): HA fitting by 6 months 1-3-6 rule, NCH goal: HA fitting by 3 months

Hearing Aid Fitting

- Exact science
- Avoid ear plug
- Avoid NIHL
- Adequate amplification
- Regular checks



Significance of No Response ABR

- **1143** ABRs in children Years 2006-2011
 - 105 (9.2%) No Response (NR)
 - Demographics
 - Etiology
 - Radiography
 - Behavioral Testing
 - Ultimate Therapy
 - Hearing aids, cochlear implants

Hang et al, Ear Hear 2015

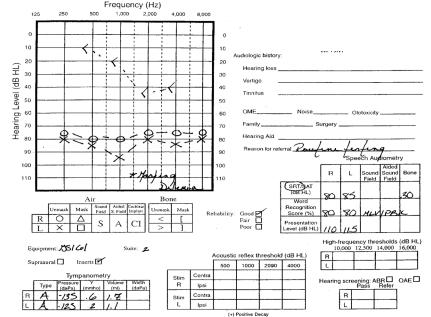
Significance of No Response ABR (n=105)

hildre/ is

Hang et al, Ear Hear 2015

Significance of NR ABRs

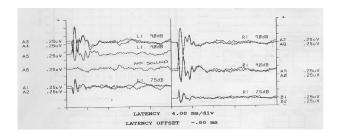
- 91 (96.8%) of 94 with follow-up received Cochlear Implant
 - 3 Not recommended for CI based on multiple challenges
 - No child denied on audiometric criteria
- Mean time from Diagnosis to CI 10.78 months
- **Delays** in receiving Cl
 - Middle ear fluid, Other medical issues, Lost- to follow up, Scheduling issues, Parental choice
- No child denied CI based on hearing aid success

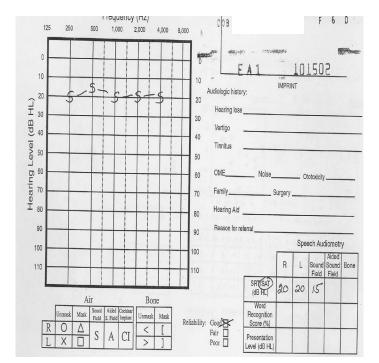


Mixed Hearing Loss

5 y/o boy,. BAHA user

- 1.5 yo \rightarrow speech delay
- ABR
 - Clicks-NR
 - 250 Hz-NR
 - 1K Hz-NR
 - Bone-NR
- ASSR-NR
- CT-X-linked Gusher

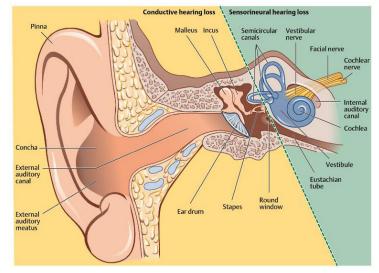




Auditory Neuropathy

3 y/o with normal speech development

- Referred NIHS @ discharge
- ABR
 - Clicks-NR
 - Cochlear microphonics present
 - Tone Bursts-NR
- ASSR-NR
- 3 yrs → normal speech without amplification



The Otolaryngology Perspective

- Classification of hearing loss
- Diagnosis
 - Etiology and severity
 - Specific anatomical relationships
 - Identification of associated problems
- Referrals to related professionals
- Treatment
 - Medical or surgical
 - PE tubes, surgical reconstruction
 - Implantable devices (Osseo-conductive devices, CIs)
 - Referrals for amplification & therapy
- Prevention and Educate
- Communicate with professionals
 - Lots of discussion on cases!!!

Etiology of Hearing Loss in Children

- Congenital Sensorineural Hearing Loss
 - Hereditary/Genetic (50%)
 - Non-syndromic
 - Syndromic
 - Non-genetic (50%)
 - Perinatal infection (ToRCHeS)
 - **CMV** responsible for 10-20% of new HL (often asymptomatic)
 - Maternal or perinatal ototoxic exposure
 - Aminoglycoside, Thalidomide, Quinine
 - Metabolic
 - Hypothyroidism

What's new in Pediatric Otology

- Etiology of Hearing Loss
 - Genetics (~50%)
 - Connexin 26, 30 (~10%)
 - Inner ear malformations (~30%)
 - Acquired
 - CMV disease (~10%)
 - Ototoxicity
 - Meningitis
 - Other toxic (NICU)
- Clinical Hearing Loss
 - Mild HL
 - Unilateral HL
 - Progressive HL
- Auditory Neuropathy (10%)

- Objective Measures
 - ECochG
 - Cortical Potentials

Cochlear Implantation

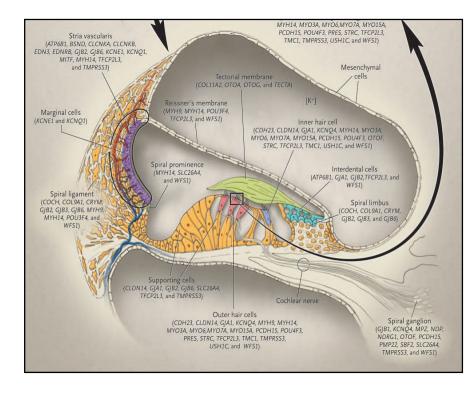
- Under 12 mo
- Single Sided Deafness
- Cochlear Nerve Deficiency
- Bilateral Implants
- Hearing Preservation
- Auditory Brainstem Implants
- Osseointegrated Implants
- Implantable Middle Ear Devices

Why does etiology matter?

Identify other Medical Conditions

- Heart Jervell & Lange Nielsen (sudden death)
- Renal Alport's Syndrome
- Eye Usher Syndrome (Blindness)
- Neurological Brown-Vialetto-Van Laere Syndrome
- Endocrine Pendred Syndrome

Identify poor prognosis


- Severe malformations
- Cochlear nerve disorders
- Future blindness

Many have relevance to communication strategy choice

Genetics of Hearing Loss in Children

- >100 identifiable types
- Univ. of Iowa (~ \$1800) Often not reimbursed!
- Takes 3-6 months
- Changes what you do?
 - Ushers
 - Long QT
 - Future

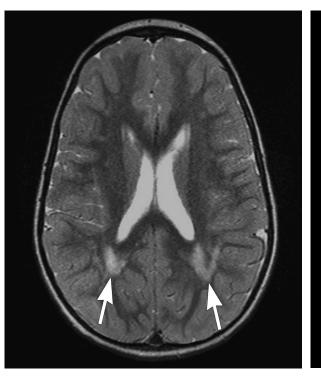
Morton & Nance et al; NEJM 2006

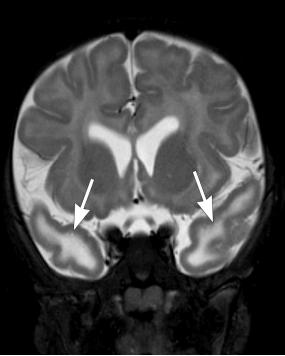
CMV-Related HL

- Prevalence 0.58% of newborns
 - 12.6% experience HL
 - 1/3 have clinical CMV
 - 10% are totally **asymptomatic**
- Most common non-genetic form of HL
 - 10-20% of all congenital HL
 - 25% of all HL by age 4
- Varies in severity but often severe to profound
- Unilateral or Bilateral
- Frequently progressive
- Not easily diagnosed
- Fluctuating vestibular disorder

CMV-Hearing Loss Study @ UNC

- 10% CMV+ on PCR testing
 - 60% no clinical CMV
 - 1 developed delayed seizures
 - 70% bilateral
 - 90% profound
 - All had "non-specific" MRI findings Significantly more common than other HL kids




Kimani et al Arch Otolaryngol Head Neck Surg (2010)

Brain Changes & CMV

- Dilated ventricles
- Lissencephaly
- Gyral anomalies
- Paraventricular cysts
- Cerebellar hypoplasia

Very Common!

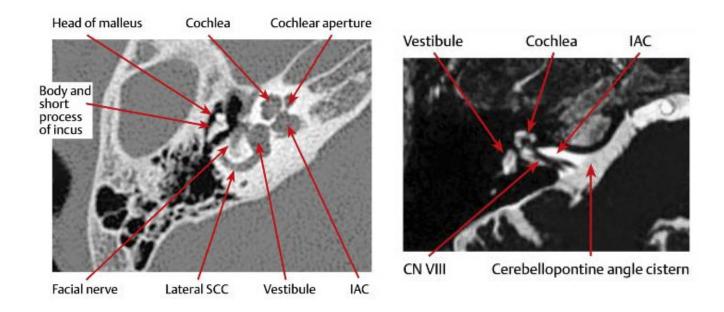
CMV-Hearing Loss

• Treatment

- Valgancyclovir → toxic
 - Treats life-threatening CMV infection
 - Not approved for hearing loss alone
- CMV-Immune globulin
- Cochlear implants work in these children!

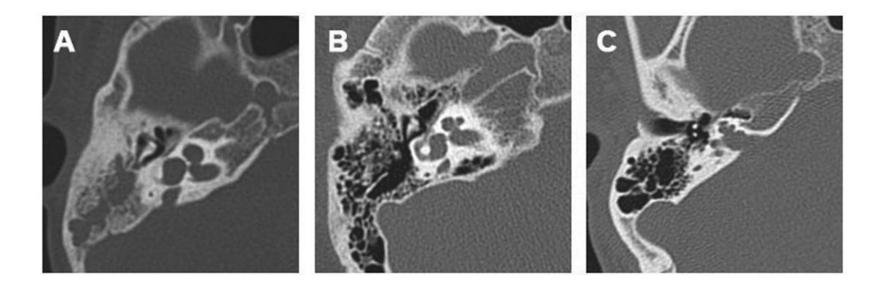
Prevention

- Valgancyclovir \rightarrow prevents HL in sick kids
- Vaccine → in trials



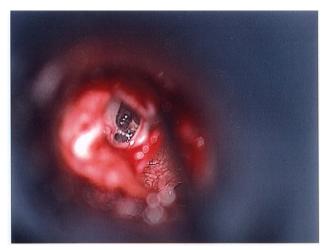
Inner Ear Malformations

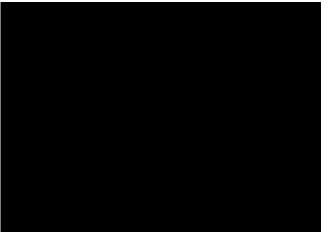
- ~ 25-30 percent
- Presentation Variable
 - Moderate to profound Hearing Loss
 - Progressive Hearing Loss
 - Mixed Hearing Loss
- Sometimes: Avoid Head Trauma!
- Consider Middle ear exploration
- Cochlear implantation
 - May have different issues
 - CSF leaks, facial nerve anomaly, decreased performance



Normal Anatomy

🚺 🐝 🧱 Childre/Vs


Incomplete Partitioning Spectrum



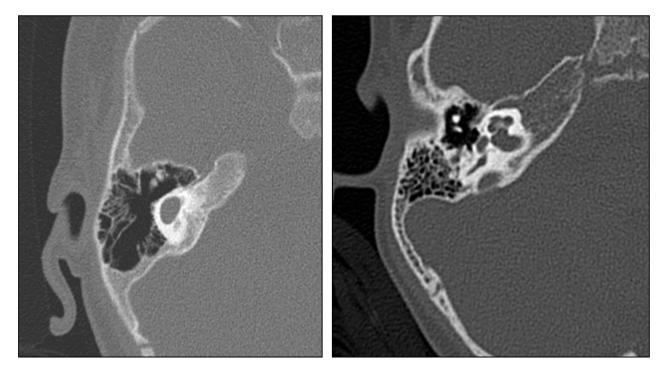
EVA

- 212 (8%) of 2500 children with SNHL have malformation
- 76 (36%) of 212 with EVA by MRI or CT
- 40 (51%) received cochlear implants
 - 50% CSF Gusher

Campbell et al, Laryngoscope 2011

EVA Study

- 38 children with EVA by MRI with adequate data
 - 19 male, 19 female (7 unilateral)
 - Audiometric data
 - Mean PTA
 - Right=79.5 <u>+</u> 28.4 dB HL (range 15-120)
 - Left=80.5 <u>+</u> 27.6 dB HL (range 25-120)
 - 65% Air-Bone Gap
 - 64% progressive, 41% stable
 - 41% profound loss
 - High between ear correlation!


EVA Generalizations

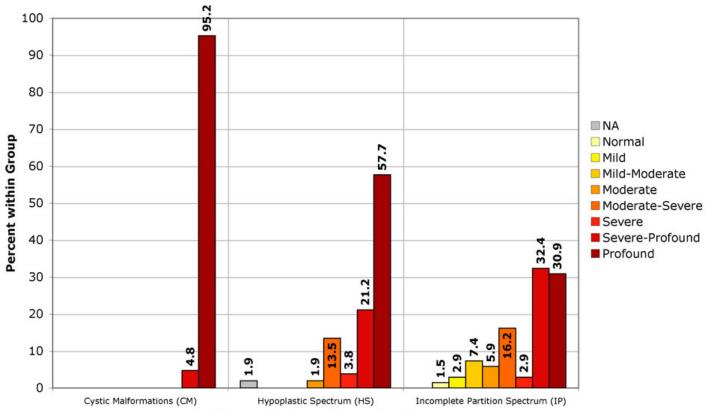
• MRI

- Good at identifying sac dilation
- Measure at PSCC might have prognostic value
- Midpoint does not correlate (difficult measure)
- Heterogeneity
- Bilateral hearing loss
- Progression common
- Gusher 50%
- Cochlear implant outcomes are good unless severe IP
 - Late onset profound HL→often post-linguistic



Common Cavity

Michel Aplasia



Vestibular Aplasia

Figure 3: Distribution (Percentage Values) of Hearing Loss within Each Group of Cochleovestibular Malformations

Cochleovestibular Malformation Group

Conclusions Malformations

- **Biology of malformation drives result!** not just residual hearing but also w/ a CI
- Implications for realistic expectations!
- Careful surgical management facial nerve issues, perilymph gusher

Medical Evaluation Summary

- History & Physical Examination
- Ophthalmology Exam (@ 1 year)
- MRI

No contrast, CT in SCC anomalies, Narrow IAC, T-bone pathology, or Cochlear Obstruction

• EKG

with bilateral profound SNHL

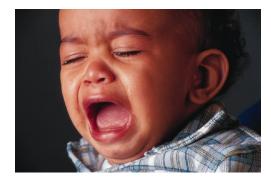
- Connexin 26 & 30 testing
- CMV PCR Guthrie card if possible
- Auditory Neuropathy with negative history
 - MRI
 - Consider neurology evaluation
 - Otoferlin +/- comprehensive genetic testing

Medical Intervention

- Available Implantable Auditory Devices
 - Neural stimulation (poor speech perception)
 - Cochlear Implants
 - Conventional Cochlear Implant*
 - Bilateral Cl
 - Single Sided Deafness
 - Electroacoustic stimulation
 - Brainstem implants (no cochlear nerve)
 - Hair Cell Stimulation (preserved speech perception)
 - Bone Anchored Hearing Devices (BAHA)*
 - Active Middle Ear Implants
 - Electromagnetic
 - Piezoelectric

Criteria for Implantation in Children

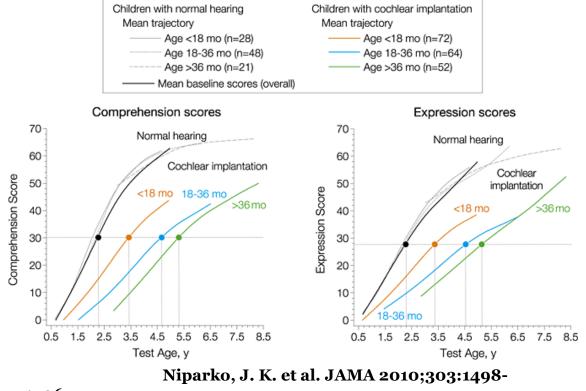
Pediatric audiologist


Speech pathologist

- Severe to profound SNHL \rightarrow
- Limited benefit from hearing aids →
- No middle ear pathology
- Present nerve and cochlea \rightarrow Otologist

This requires complex interdisciplinary teamwork. Must become conversant in others discipline

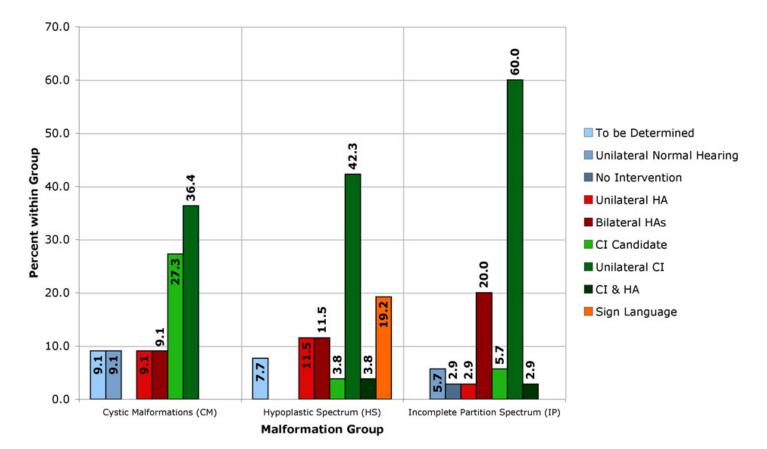
Essence of the Problem

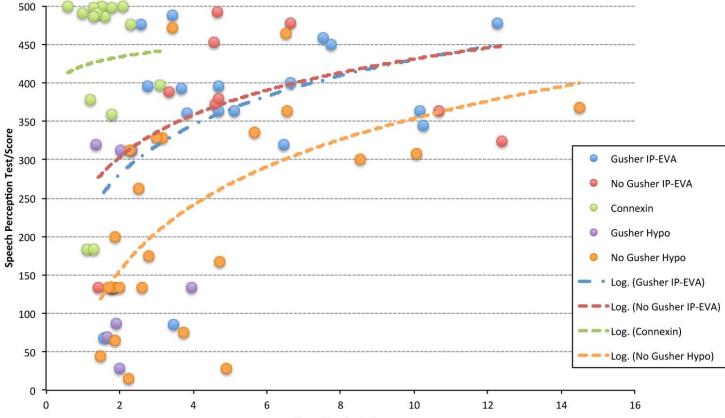

Destroy Residual Hearing

Earlier Is Better

Earlier is Definitely Better

Reynell Developmental Language Scores



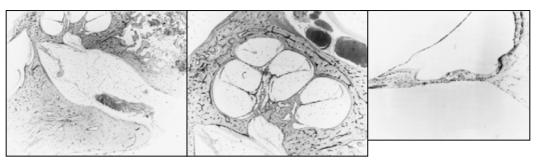

1506.

Cochlear Implant Results

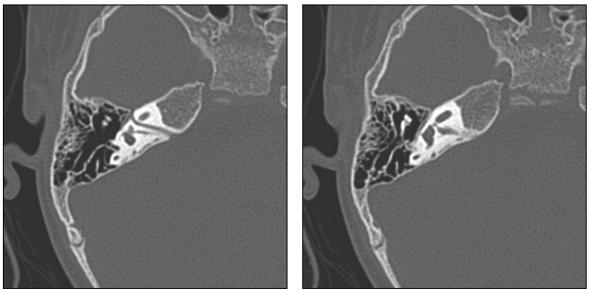
Figure 4: Hearing re(habilitation) According to Type of Malformation. Percent of Subjects per Group.

IP-EVA vs Hypolastic: Speech Reception and Age at Implantation

Age at Implantation


Cochlear Nerve Deficiency (CND)

- Absent or small cochlear nerves
- Doesn't presume causality
- Agenesis, aplasia, hypoplasia suggest lack of development
- Could be secondary to degeneration!


Temporal Bone Histopathology

- Associated with:
- Normal or small internal auditory canals (IACs)
- Normal or abnormal inner ears
- · Vestibular and facial nerves present or absent

Nelson EG, Hinojosa R. Aplasia of the cochlear nerve: a temporal bone study. Otol Neurotol 2001;22:790-795.

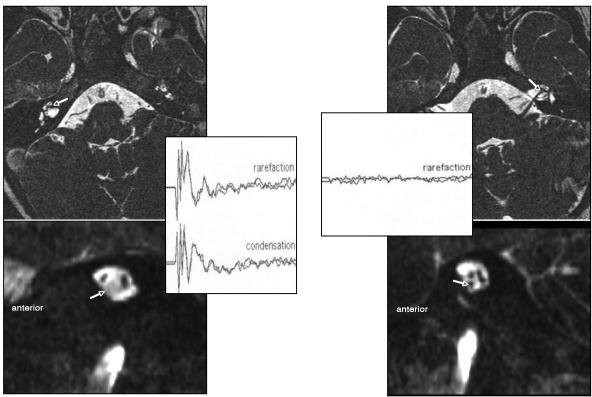

Temporal Bone Imaging

- Jackler RK, Luxford WM, House WF. Sound detection with the cochlear implant in five ears of four children with congenital malformations of the cochlea. Laryngoscope 1987;97:15-17.
- Shelton C, Luxford WM, Tonokawa LL, Lo WW, House WF. The narrow internal auditory canal in children: a contraindication to cochlear implants. Otolaryngol Head Neck Surg 1989;100:227-231

Temporal Bone Imaging

- Casselman JW, Offeciers FE, Govaerts PJ et al. Aplasia and hypoplasia of the vestibulocochlear nerve: diagnosis with MR imaging. Radiology 1997;202:773-781.
- Glastonbury CM, Davidson HC, Harnsberger HR, Butler J, Kertesz TR, Shelton C. Imaging findings of cochlear nerve deficiency. AJNR Am J Neuroradiol 2002;23:635-643.

MRI for Children with SNHL


- Started around 2001-2
- Used Glastonbury protocol
 - CISS imaging
- Clinical examination
- Diagnostic **ABR** using single polarity **click stimuli**
- Visual reinforcement audiometry (VRA)

Glastonbury CM, Davidson HC, Harnsberger HR, Butler J, Kertesz TR, Shelton C. Imaging findings of cochlear nerve deficiency. AJNR Am J Neuroradiol 2002;23:635-643.

Left Ear

Absent CN VIII

- Started around 2001-2
- Used Glastonbury protocol
 - CISS imaging
- Clinical examination
- Diagnostic ABR using single polarity click stimuli
- Visual reinforcement audiometry (VRA)

Cochlear Nerve Deficiency

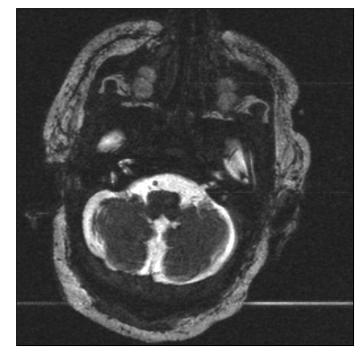
- 27 children identified by MRI since 2002
 - 6 bilateral, 21 unilateral
 - Newborn Screen →1 pass; 22 fail; 4 NA
 - **58%** of ears have normal IAC (> 3mm)
 - 37% of ears have normal labyrinth
- Audiology
 - CM present \rightarrow 70% of ears
 - ~ 20% of AN kids have absent 8th nerves
 - All ears have profound HL
 - Adunka OF, Roush PA, Teagle HFB, Brown CJ, Zdanski CJ, Jewells V, Buchman CA. Internal auditory canal morphology in children with cochlear nerve deficiency. Otol Neurotol (in press).
 - Buchman CA, Roush P, Teagle H, Brown CJ, Zdanski C, Grose J. Auditory neuropathy characteristics in children with cochlear nerve deficiency. Ear Hear (in press).

Take Home

- Absent 8th Nerve
 - not uncommon 27 cases in 3 years
 - auditory neuropathy phenotype
 - Commonly
 - normal IAC morphology
 - normal labyrinth
- Need MRI instead of CT in all kids
 - with profound hearing loss
 - with auditory neuropathy phenotype

🚺 🐝 🧱 Childre 🦓

.... is that the entire story?



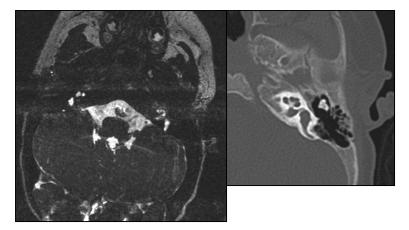
Case Report

- 5 y/o boy w/ CHARGE
- Referred neonatal screen
- ABR
 - − Left \rightarrow NR
 - Right → moderate CHL
- Facial function
 - Left \rightarrow paralysis
 - − Right → normal
- MRI
 - Small IACs (< 3mm)
 - No nerve left

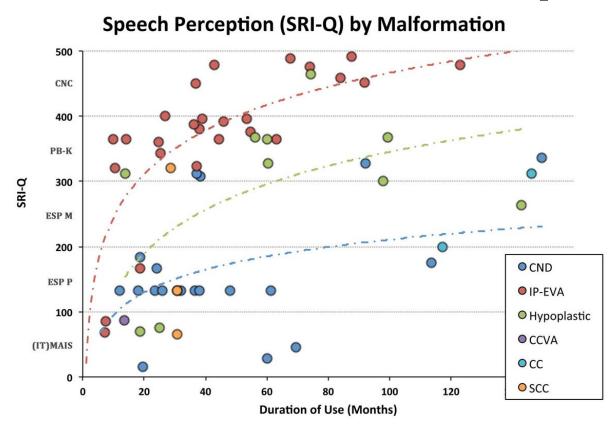
hildrer is

- Single nerve right

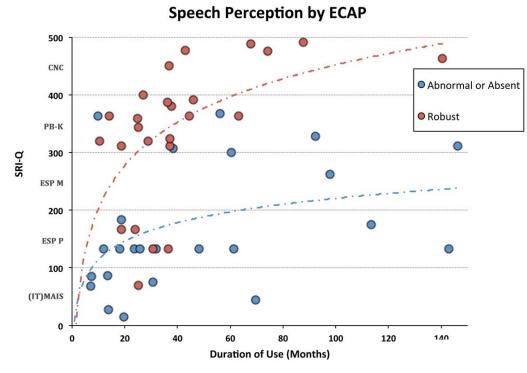
- * MRI not definitive in cases of small IAC
- ** Small IAC doesn't rule out cochlear nerve


If IACs are Small...

- Use everything you have:
- Physical examination
- Both MRI & CT
- Audiology
 - ABR
 - -OAE
 - Behavioral testing (VRA)


What to do when IACs are Small?

- Failed newborn screen
- Bilateral profound HL
- Normal facial function
- MRI
 - Small IAC bilateral
 - Single Nerve bilateral
- CT
 - Patent modiolus left
 - Closed right



- Cochlear Implant or not?
- Need promontory stimulation ABR!

Functional Consequences

Influence of Neural Structures

🛭 🐝 🧱 Childre/ I's

Conclusions

- MRI instead of CT for screening SNHL
- **CT** selectively when:
 - IAC < 3mm
 - Single nerve in canal
 - Cochlear obstruction
 - Semicircular canal malformation → Facial nerve
 - Temporal bone pathology
- Use everything you have when IACs are small
- Need promontory stimulation ABR

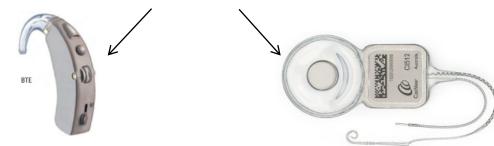
Hearing loss, Cochlear Implants and Meningitis

- Pneumococcal Vaccinations recommended for all patients
 - PCV 7 (Prevnar-7)
 - Polysaccharide vaccine (PCV-23)
 - PCV-13 (Prevnar-13)

Pediatrics 2010;126:381-91

- Visit the CDC Website for details
 - https://www.cdc.gov/vaccines/vpd/mening/hcp/dis-cochleargen.html
- AAO-HNS Implantable Hearing Devices Subcommittee

🚺 🐝 🧱 Childre 🥂

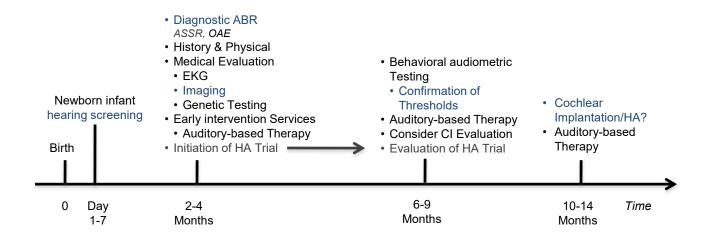


Case Presentations

Evaluation of Pediatric SNHL

- Complicated clinical algorithm
- Multiple specialties
- Goal: Early hearing decision!

• Problem: Cl compromises residual hearing

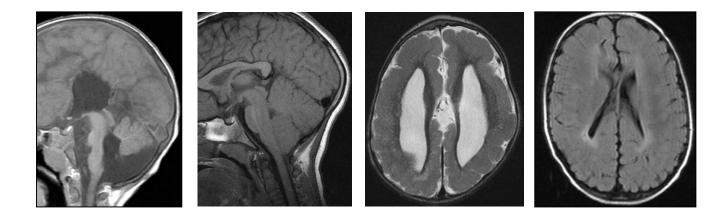

- New mother G1P1
- 2 week old infant
- Referred NIHS
- PMH noncontributory term delivery, no NICU
- No FH pertinent for HL
- NS ABR: bilateral moderate-severe SNHL

- Next steps?
 - Audiology?
 - SLP?
 - Medical evaluation?
 - Imaging? If so, which modality? What timing?
 - Genetic testing? If so, which panel?
 - EKG, Ophthalmology, kidney U/S

Timeline

Clinical Algorithm

- Make the diagnosis
 - Single polarity click ABR, OAEs
- Image early (MRI)
 - Temporal bone, CNS, cochlear nerve!!
- Observation until VRA possible
 - ~7-9 months, can vary


Behavioral testing

- Normal testing: f/u, repeat ABR?
- Abnormal testing: **amplification**

- Intensive auditory-based therapy
- Failure of speech perception and language
 - Consider cochlear implantation

CNS Findings

- 8 week old infant
- Referred NIHS
- PMH noncontributory term delivery, no NICU
- FH pertinent for HL paternal side
- 3 previous ABRs non-diagnostic
- OAEs absent

- Next steps?
 - Audiology? Hearing aid fitting
 - SLP?
 - Initiate medical evaluation?
 - Imaging?
 - Genetic testing?
 - Other tests?

Actionable ABR

- Threshold estimates for 4 frequencies 500, 1000, 2000, 4000 Hzfor each ear!
- Bone conduction ensure it's not conductive
- Amplification should NOT be attempted w/o a complete dataset!

ABR Timeline

- No actionable data
 - Following two attempts
 - Child ≥ 3 months

Proceed with **sedated study**!!

• National goal (JCIH): HA fitting by 6 months 1-3-6 rule, NCH goal: HA fitting by 3 months in 2016: average HA fitting of **3.4 months**!

Factors that Delay

Auditory

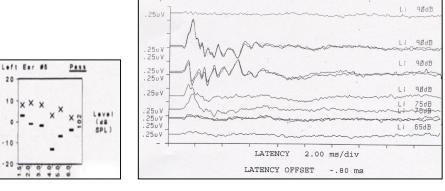
- Delay in diagnosis
- Significant residual hearing
- Fluctuating hearing
- Unreliable or conflicting test results
- ANSD
- Inappropriate amplification
- Speech Development
 - Good progress despite profound HL

Parental issues

- Missed appointments
- Don't wear devices
- No educational buy-in
- Socioeconomic
- Multiple Challenges
 - Cerebral palsy/Autism
- Medical
 - Anatomic uncertainty
 - CN deficiency
 - Severe inner ear malformation

• Former 33 wk premature birth NICU stay, hyperbilirubinemia

Pass

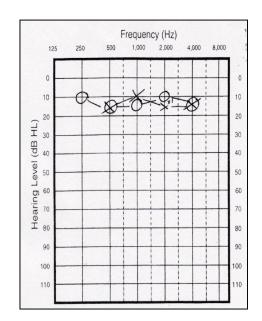

20

Referred NIHS AU

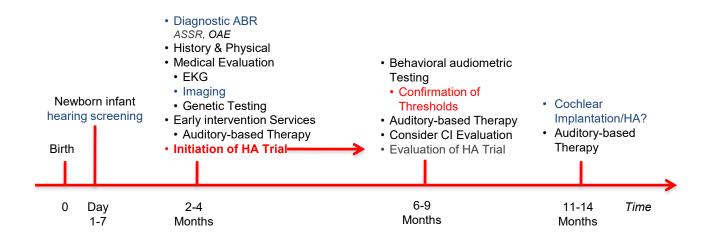
Right Ear #4

• ABR @ 2 wk

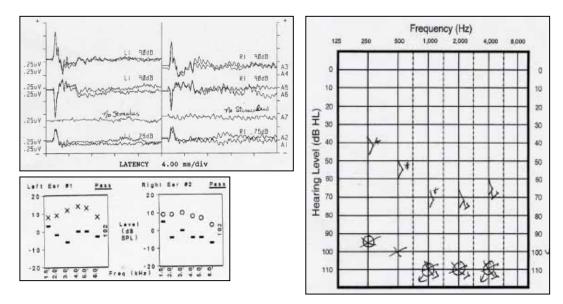
age corrected



- Next steps?
 - Audiology? Hearing aid fitting?
 - SLP?
 - Initiate medical evaluation?
 - Imaging?
 - Genetic testing?
 - Other tests?

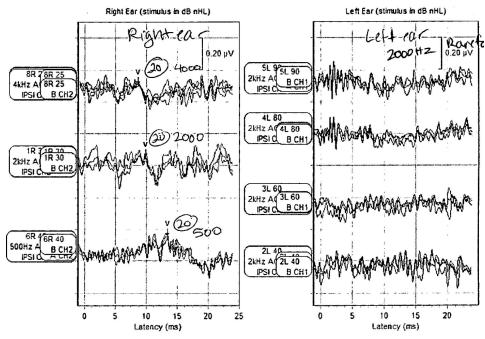


- 9 months old
- VRA testing
- Next steps?
 - Audiology?
 - SLP?
 - Medical?

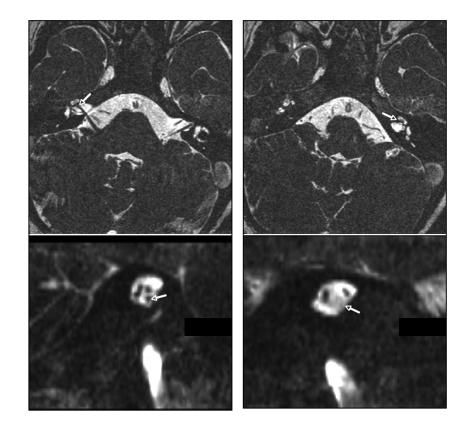


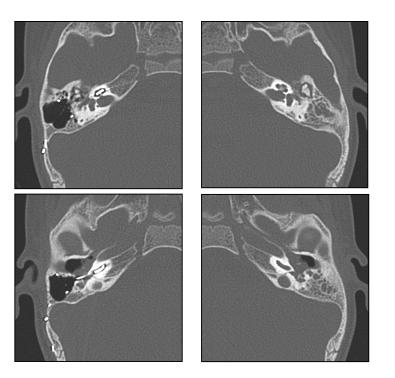
Timeline ANSD

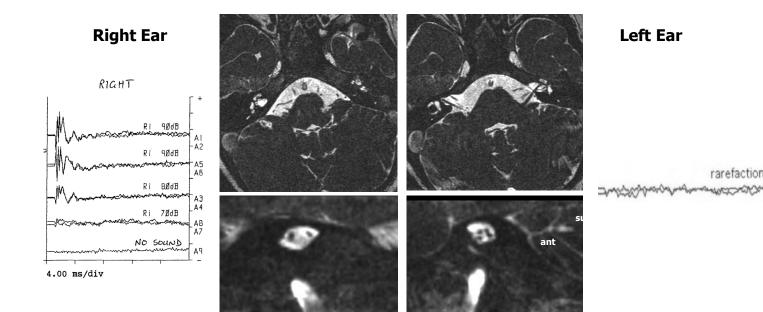
• Alternate scenario



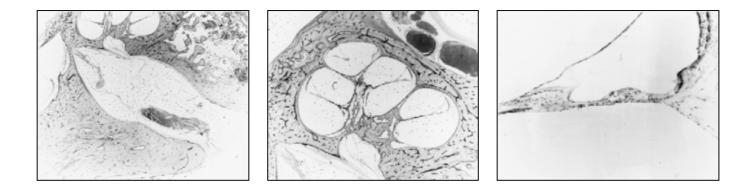
- 4 week old infant
- Term delivery, no PMH
- No FH
- Referred NIHS on the left
- NS ABR




- Next steps?
 - Audiology?
 - SLP?
 - Medical
 - Imaging?
 - Other tests
 - Counseling?



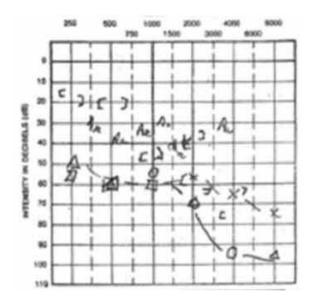
- 2 y/o boy, status post right CI
- Lack of benefit
- Bilateral profound SNHL



🚺 🐝 🧱 Childre ()'s

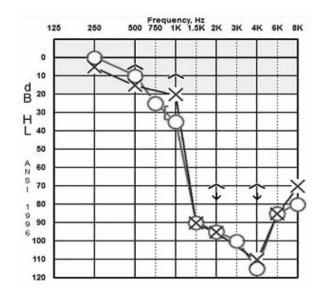
🚺 🐝 🧱 Childre/Vs

CND

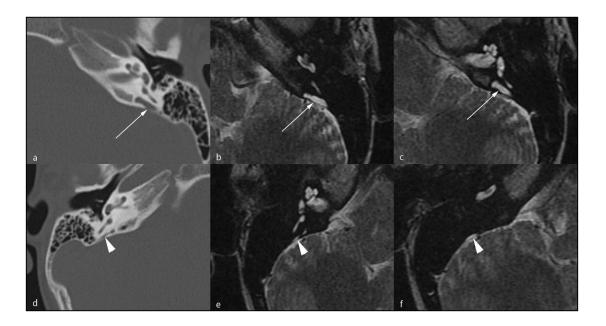


- 12 y/o female
- Slowly progressive SNHL
- Bilateral EVAs Mondini anomaly
- Educational concerns S&L concerns

- Next steps?
 - Audiology?
 - SLP? Including educational measures
 - Implant or not?
 - Hearing preservation?
 - Other measures?



Essence of the Problem

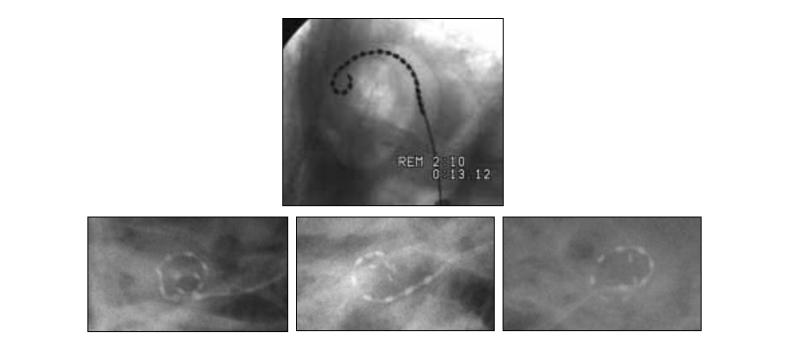

- Alternate scenario
 - 14 y/o slowly progressive SNHL
 - Normal imaging
 - CNC Words: 45 percent best aided condition

- 8 wk old infant
- Referred NIHS on left
- NS ABR
 - left mod-prof SNHL
 - Right normal hearing

- Next steps?
 - Audiology?
 - CROS, Amplification?
 - SLP?
 - Counseling what is the HL risk for the right ear?

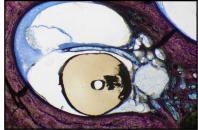
- 13 month old male
- Bilateral NR ABRs
- Bilateral cochlear implantation Cochlear Corporation 532

- Counseling
 - Device technology, selection? Electrode selection?
 - Reliability?
 - Assistive listening devices?
- Intraoperative testing?
 - Imaging?
 - NRT?
 - Structure preservation?



Surgical Goals

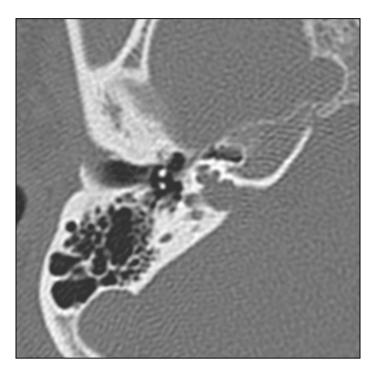
- Cochlear Opening
 ...into scala tympani
 - Surgeon factors
- Insertion in to scala tympani
 - Surgeon factors
 - Electrode factors
- Eliminate collateral trauma
 - Biological factors



Intracochlear Placement

- Better Performance w/ ST
 - Skinner et al, Ann Otol Rhinol Laryngol Suppl 2007;197:2-24.
 - Aschendorff et al, Ear & Hearing 2007; 28:75S-79S.
 - Modeling: up to **40% improvement** possible Finley et al, *Otol Neurotol 2008: 29:920-8.*
- Scala vestibuli
 - Possible performance drop
 - Likely not able to preserve hearing
- Over-insertions are bad ...need basal turn coverage

- 3 y/o female
- Referred NIHS
- Lost to f/u
- Now presenting w/ bil prof SNHL no language
- Imaging normal
- SW involved family interested in CI



- Next steps?
 - How to resolve SW issues?
 - Implant despite SW concerns?
 - f/u and continued speech?
 - Educational measures?

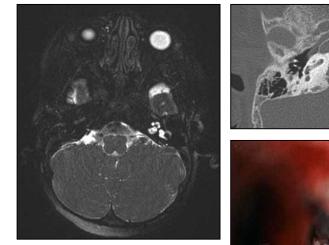
- 8 y/o boy with bilat severe MHL
- Two brothers affected wearing hearing aids
- S&L delay
- Imaging


- Next steps?
 - Continue amplification? Relevance of pseudoconductive component?
 - CI?

If so, which electrode?

• Intraoperative management?

Abnormal Facial Nerve



- 3 y/o girl w/ pneumococcal meningitis no steroids, 3 weeks ago
- Now recovered but bilateral HL
- Behav audiometry bilat prof SNHL

- Next steps?
 - Imaging? If so, which modality?
 - ABR?
 - Cl candidate? Timeline?

Conclusions

- Pediatric HL requires large team approach
- Multiple professional groups
 - Physicians
 - (Specialized) Audiologists
 - SLPs, AVTs, Educators
- Appropriate NIHS ...and appropriate follow-up!
- Early amplification & proper evaluation Physician plays a central role
 - Early cochlear implantation if indicated

