

Department of Otolaryngology Head & Neck Surgery

Factors influencing Pandemic-Era EHDI Utilization and Access

Nicole Perez March 14th, 2022

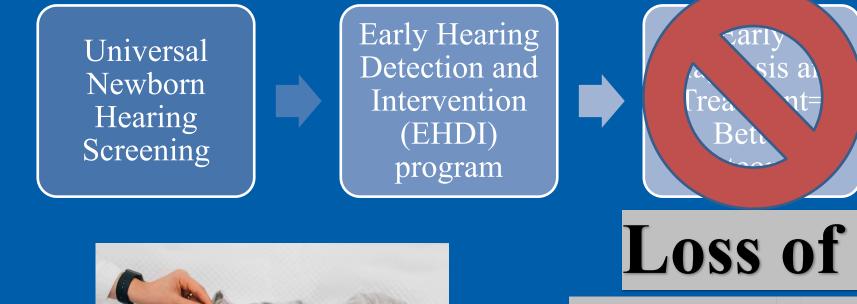
Disclosures

• NIH/NIDCD Grant: R01 DC017770 (PI: MLB)

Objectives of this talk

Discuss hearing loss in infants and loss of follow- up to diagnostic testing
Examine impact of health disparities on infant hearing healthcare
Discuss possible ways of addressing health disparities

Hearing loss in infants


- Hearing loss affects nearly 2 of every 1,000 American newborns screened
- Most common congenital sensory disorder
- Impact on language development, school performance, and life-long quality of life

https://www.cdc.gov/ncbddd/hearingloss/data.html

Addressing Infant Hearing Loss

Follow-Up

Delays in Diagnosis of Congenital Hearing Loss in Rural Children

ORIGINAL

ARTICLES

Head & Neck Surgery

Matthew L. Bush, MD¹, Kristin Bianchi, BA², Cathy Lester, MSSW³, Jennifer B. Shinn, PhD¹, Thomas J. Gal, MD, MPH¹, David W. Fardo, PhD⁴, and Nancy Schoenberg, PhD⁵

Table.Kentucky congenital hear2011)	Hearing Loss Incidence: 1.7:1000		
Region of birth	Appalachia	Non-Appalachia	live births
Live births Failed newborn screens Permanent childhood hearing loss Severe sensorineural hearing loss Percentage of families obtaining diagnostic testing after unilateral or bilateral failed screening test	43 636 1788 56 28 76.1%	119615 5182 223 93 82.7%	25% lost to follow-up
 Percentage of families obtaining diagnostic testing following bilateral failed screening test Children with hearing loss enrolled in early intervention program 	73.4% 51.8%	84.6% 52%	Department of Otolaryngology

Age of Final Diagnosis in Kentucky

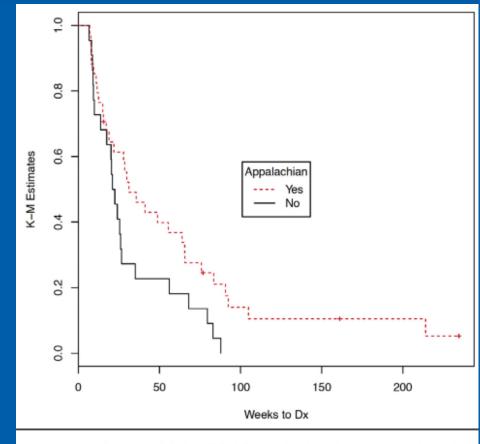


Figure 1. Kaplan–Meier (K–M) analysis of time (weeks after birth) to final diagnosis (Dx) of congenital hearing loss.

Mean Age to Diagnosis

- Appalachia: 7 months
- Non-Appalachian Kentucky:
 5.1 months
- The Goal is: **3 months**

Log-rank test P=0.038

Department of Otolaryngology Head & Neck Surgery

(Bush 2014)

Original Research-Pediatric Otolaryngology

Geeta K. Swamy, MD⁸

Geographic and Racial Disparities in Infant Hearing Loss

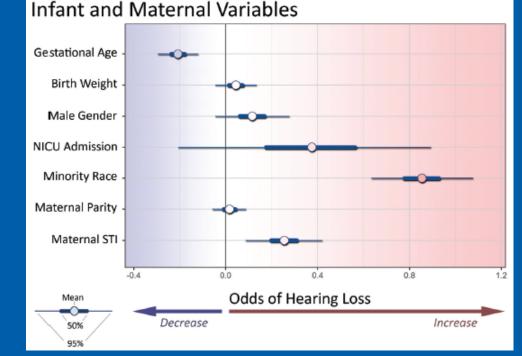
Paul M. Lantos, MD, MSGIS^{1,2,3}, Gabriela Maradiaga-Panayotti, MD¹

Xavier Barber, PhD⁴, Eileen Raynor, MD⁵, Debara Tucci, MD, MBA⁵, Kate Hoffman, PhD⁶, Sallie R. Permar, MD, PhD^{1,7}, Pearce Jackson⁶,

Brenna L. Hughes, MD⁸, Amy Kind, MD, PhD^{9,10}, and

Otolaryngology-Head and Neck Surgery 2018, Vol. 159(6) 1051-1057 © American Academy of Otolaryngology-Head and Neck Surgery Foundation 2018 Reprints and permission: sagepub.com/journals-permissions DOI: 10.1177/0194599818803305 http://otojournal.org SSACE

FOU


AMERICAN ACADEMY OF OTOLARYNGOLOGY-HEAD AND NECK SURGER

NDATION

• <u>Non-white race</u>: 2.45 higher odds of hearing loss

Infant Hearing Loss

 Urban low-income neighborhoods: Higher prevalence of hearing loss

What are Health Disparities?

Health Disparities

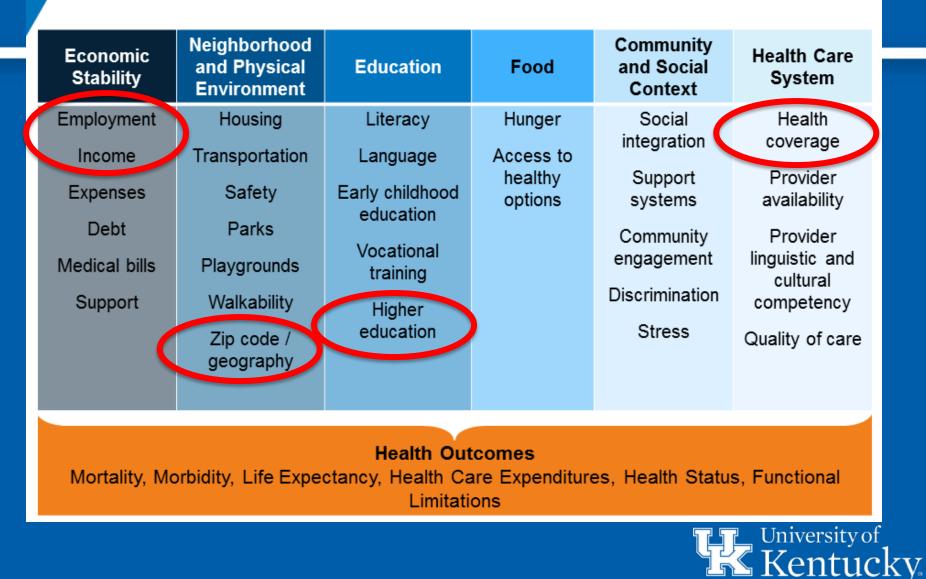
- Health difference that is closely linked with economic, social, or environmental disadvantage.
- Adversely affect groups of people who have systematically experienced greater social or economic obstacles to health
- <u>Contributing factors:</u> race, ethnicity, religion, socioeconomic -status, gender, age, sexual orientation or gender identity, or geographic location

Department of Otolaryngology Head & Neck Surgery

(Healthy People 2030)

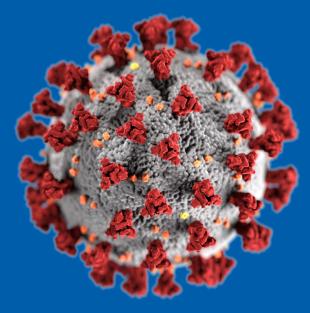
Health Disparities

• "Health disparities are <u>preventable</u> differences in the burden of disease, injury, violence, or opportunities to achieve optimal health that are experienced by socially disadvantaged populations."


Department of Otolaryngology Head & Neck Surgery

https://www.cdc.gov/healthyyouth/disparities/index.htm

What causes disparities?



Social Determinants of Health

https://www.kff.org/disparities-policy/issue-brief/disparities-in-health-and-health-care-five-key-questions-and-answers/

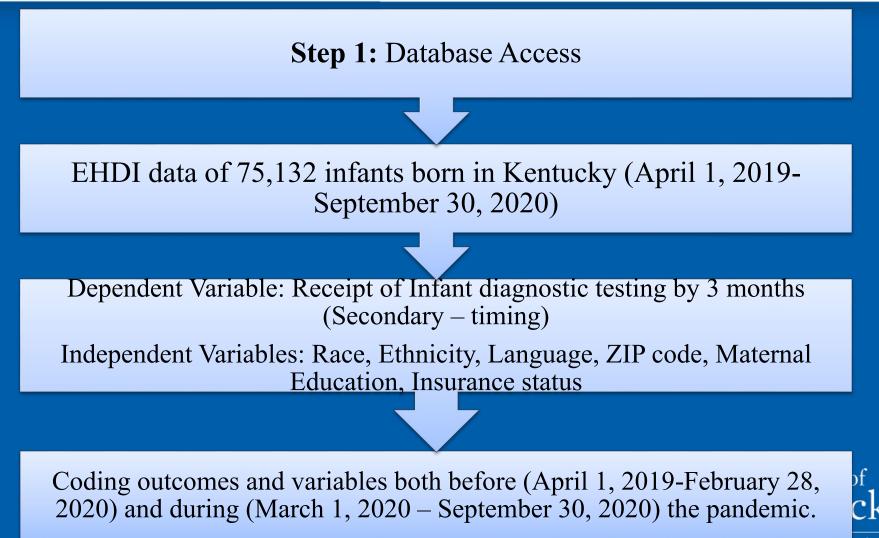
COVID-19 amplifies Health Disparities

Striving for Health Equity

Identifying factors that lead to Health Disparities

> Addressing Social determinants of health

Achieving Health Equity



Study Objectives


- 1. Compare EHDI diagnostic testing adherence (diagnostic testing by 3 months of age) and the incidence of infant hearing loss before and during the COVID-19 pandemic.
- 2. Evaluate the association of racial, ethnic, and linguistic factors on diagnostic testing adherence.
- 3. Identify sociodemographic factors that influence timing of diagnostic testing.

Methods Overview

Methods Overview

Out of state infants and infants with no hearing screening were removed (n=71,208)

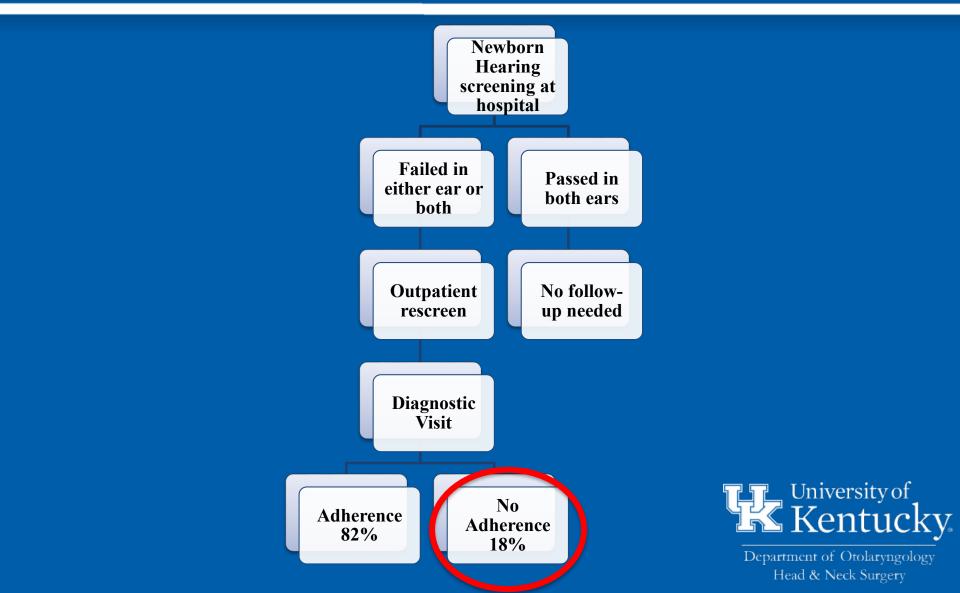
Step 3: Univariate and Multivariate Analysis

Demographics of study sample

Demographics	Count
Gender	
Male	n=36187 (51%)
Female	n=35019 (49%)
Race	
White	n=57733 (81%)
BIPOC	n=13475 (19%)
Ethnicity	
Non-Hispanic	n=66137 (93%)
Hispanic	n=4938 (7%)
Maternal Language	
English	n=68464 (96%)
Non- English	n=2744 (4%)

n=71,208

Unknowns excluded from calculations



Demographics of study sample

Demographics	Count
Maternal Education	
Less than Highschool	n=8805 (12%)
Highschool or greater	n=62036 (88%)
Location	
Urban Counties	n=84 (70%)
Rural Counties	n=36 (30%)
COVID-19	
Born prior to COVID-19 pandemic	n=43843 (62%)
Born during the COVID-19 pandemic	n=27365 (38%)
Insurance	
Private	n=12121 (45%)
Medicaid	n=14556 (55%)

Overall diagnostic testing adherence in our study

Initial newborn hearing screening results

	Passed Hearing Screening	Failed Hearing Screening	No Hearing Screening
Pre-COVID-19 Infants born: (April 1, 2019- February 28, 2020)	95.14%	4.37%	0.49%
COVID-19 Infants born: (March 1, 2020- September 30, 2020)	94.69%	4.45%	0.68%

Hearing loss incidence

	No Hearing Loss	Unilateral Hearing Loss	Bilateral Hearing Loss
Pre-COVID-19 Infants born: (April 1, 2019- February 28, 2020)	99.01%	0.63%	0.36%
COVID-19 Infants born: (March 1, 2020- September 30, 2020)	98.78%	0.73%	0.49%

COVID-19 pandemic impact on diagnostic testing adherence

	Diagnostic Testing Adherence	p value	Odds ratio	95% Confidence Interval	
COVID-19		0.05	0.76	0.57 - 1	

Multivariate logistic regression (holding COVID, Gender of Infant, location of residence, race, ethnicity and hearing loss status constant)

During the pandemic infants had a 24.3% lower odds of hearing testing adherence. Adherence - 83.6% (Pre-Covid) vs. 79.8% (Covid)

Ethnicity impact on diagnostic testing adherence

	Diagnostic Testing Adherence	p value	Odds ratio	95% Confidence Interval	
Hispanic Ethnicity		0.04	0.55	0.31 – 0.96	

Multivariate logistic regression (holding COVID and insurance status constant)

Hispanic infants have 46% lower odds of EHDI adherence, compared with non-Hispanic infants.

Language impact on diagnostic testing adherence

	Diagnostic Testing Adherence	p value	Odds ratio	95% Confidence Interval	
Infants of Swahili speaking					
families		0.005	0.13	0.031 - 0.54	
Multivariate logistic regression (holding COVID, insurance status and education					

constant)

Infants of Swahili speaking families have 87% lower odds of EHDI adherence

Maternal education impact on diagnostic testing adherence

	p value	Odds ratio	95% Confidence Interval		
Maternal					
education	0.02	1.50	1.06 - 2.12		
Univariate Analysi	S				
Maternal					
education	0.03	1.63	1.06 - 2.51		
Multivariate logist residence, race, eth	ic regression (holding C nicity constant)	COVID, Gend	er of Infant, loo	cation of	
Infants of mothers with ≥ high school degree had: 1. 1.50 times higher odds of EHDI adherence					

2. 1.63 times higher odds of having normal hearing on EHDI testing

Maternal education impact on diagnostic testing adherence

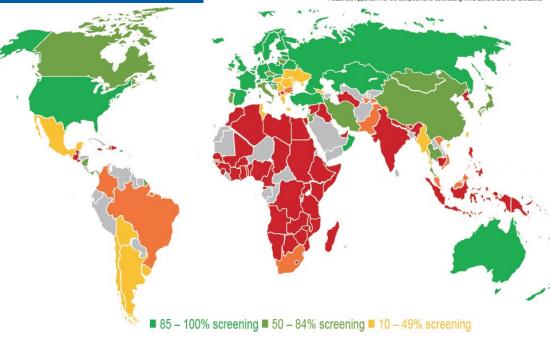
	Co-efficient	p value	95% Confidence Interval	
Maternal education	-9.53	0.003	-15.73 -3.32	

Multivariate linear regression (holding COVID, Gender of Infant, location of residence, race, ethnicity, and hearing loss constant)

Infants of mothers with ≥ high school degree presented, on average, 9.5 days earlier for testing

What do we know?

1. EHDI Services are Effective!



A Survey on the Global Status of Newborn and Infant Hearing Screening

Katrin Neumann, MD' Harald A. Euler, PhD' Shelly Chadha, MD² Karl R. White, PhD³ The International Newborn and Infant Hearing Screening (NIHS) Group⁴

¹Department of Phoniatrics and Pedaudiology, University Hospital Minister, University of Minister Minister, Germany *Sensory functions, Disability and Rehabilitation, Department of Noncommunicable Diseases, World Health Organization, Geneva, Switzerland *National Center for Hearing Assessment and Management, Utah State University, Logan, UT, USA #Please see Appendix 16 of the complete list of contributing NIHS authors and their affiliations.

- 38% of the world's population have no EHDI services
- Screening country: Dx at 4.6 months
- Non-screening country: <u>34.9</u>
 <u>months</u>

■ 1 – 9% screening ■ 0 – 1% screening ■ No Data

Department of Otolaryngology Head & Neck Surgery

(Neumann 2017)

2. Barriers to Early Diagnosis and Treatment

- **COVID-19**
- Race/ Ethnicity
- Parental Education
- Health Insurance Status
- Economic Stability
- Zip code/Geography
- Communication

Department of Otolaryngology Head & Neck Surgery

(Deng 2020) (Bush 2014)

3. Speech Outcomes = Why this all matters!

Meeting EHDI Guidelines

- Expedites CI Activation = 15 months earlier activation
- Higher Vocabulary Quotient
- Maternal Education:
 - Higher education = Higher
 Vocabulary Quotient
- Age of Implantation
 - Younger = Higher Vocabulary Quotient

Early Hearing Detection and Vocabulary of Children With Hearing Loss

. Christine Yoshinaga-Itano, PhD,^a Allison L. Sedey, PhD,^{a,b} Mallene Wiggin, PhD,^a Winnie Chung, AuD^o

Language Outcomes Improved Through Early Hearing Detection and Earlier Cochlear Implantation

*†Christine Yoshinaga-Itano, *‡Allison L. Sedey, *Mallene Wiggin, and §Craig A. Mason

Department of Otolaryngology Head & Neck Surgery

(Yoshinaga-Itano 2017, 2018)

How can we address disparities?

Principles For Advancing Hearing Health Equity

- 1. Raising public and provider awareness of racial/ethnic disparities in care
- 2. Improving capacity and number of hearing healthcare providers and facilities in underserved communities
- 3. Respect and Involve Communities in Health Equity Initiatives
- 4. Measure and Evaluate Progress
- 5. Community Engagement/Outreach
- 6. Consider long-term impact of COVID-19 on infants among vulnerable populations

https://www.kff.org/racial-equity-andhealth-policy/issue-brief/eliminatingracialethnic-disparities-in-health-carewhat/ https://www.apha.org

Clinical Trials to promote Equity

The Laryngoscope © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

TRIOLOGICAL SOCIETY CANDIDATE THESIS

Promotion of Early Pediatric Hearing Detection Through Patient Navigation: A Randomized Controlled Clinical Trial

Matthew L. Bush, MD, PhD [©]; Zachary R. Taylor, BA; Bryce Noblitt, MD; Taylor Shackleford, MS; Thomas J. Gal, MD, MPH; Jennifer B. Shinn, PhD; Liza M. Creel, PhD, MPH; Cathy Lester, MSSW; Philip M. Westgate, PhD; Julie A. Jacobs, MPH; Christina R. Studts, PhD

- 1. Patient Navigation Can Improve Access and Utilization of Infant Hearing Healthcare
- 2. EHDI Infant Dx Follow-up Increased from 68% to 93%
- 3. Timing improved from 106 days to 68 days
- 4. Hybrid Effectiveness-Implementation Trial

Limitations

- Retrospective study
- Missing data, Inaccurate reporting
- Patients excluded— out of state infants and infants with no hearing screening result

Conclusion

- 1. The COVID-19 pandemic impacted EHDI programs
- 2. Race/Ethnicity/Language are associated with adherence
- 3. Maternal education impacts infant hearing outcomes
- 4. Use this data in programmatic planning and intervention work for vulnerable populations

Acknowledgements

- I would like to thank Dr. Matthew Bush for his guidance, mentorship and help throughout this project.
- I would also like to thank Marissa Schuh for all her contributions and assistance with this project.

Thank you for your time!

