Clinical Impact of Genetics in Sensorineural hearing Loss

Dylan K. Chan, MD, PhD

Associate Professor Pediatric Otolaryngology-Head and Neck Surgery Benioff Children's Hospital University of California, San Francisco

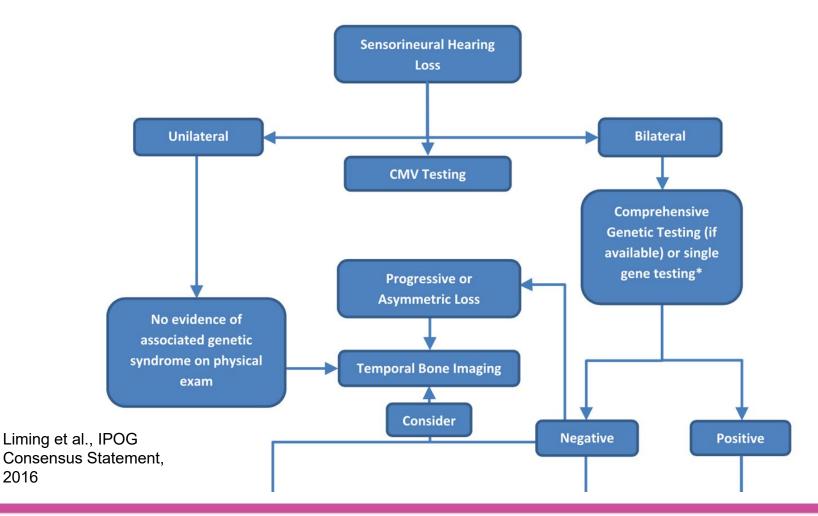
Susan Wiley, MD

Professor Developmental & Behavioral Pediatrics Cincinnati Children's Hospital Medical Center University of Cincinnati

EHDI Conference March 15, 2022 2:30-3:00 pm MST

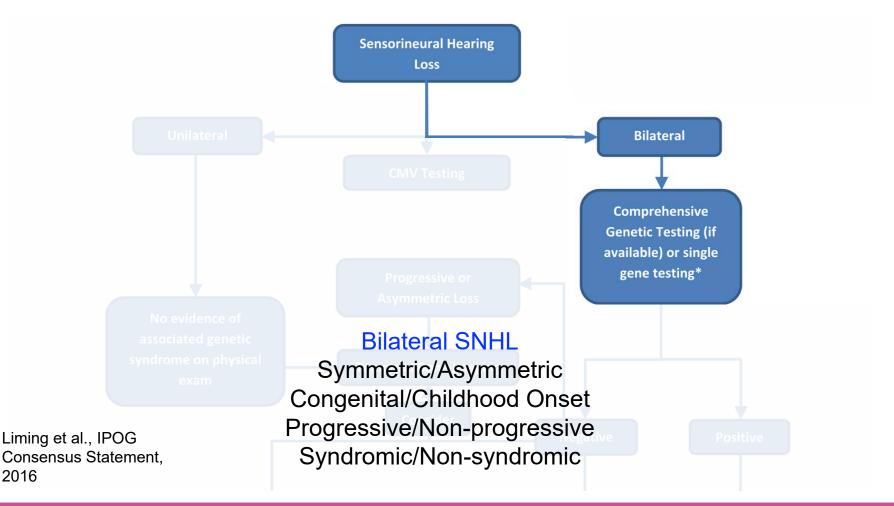
Conflict of Interest

• The presenters have no conflicts of interest


Outline

- Genetic testing in children who are D/HH
- The impact of genetic knowledge on management of D/HH
- Case studies
- Questions

Genetic Testing Who? When?



2016

Genetic Testing Who? When?

Genetic Testing How?

UNIVERSITY OF IOWA

Molecular Otolaryngology Renal Ressarch Laboratories The University of Iowra • 5270 CB88 • Iowra (iry, 14 52242–1028 319-335 6623 Tel • 319-353 5869 Fax • https://mct.lab.uiowra.edu/ CLIA: 160966193

$O_{G E N ETIC} C_{T E S T N G} O_{G E N ETIC} C_{T E S T N G} O_{C} O_$

Gene	Hearing Loss Phenotypes	OMIM Gene ID	Inheritance
ABHD12	Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC syndrome)	6653	68
ACTB	Basiter Winter androme 1	1026-10	AD
ACTG1	Deafness: autosomal dominant 20/Deafness: autosomal dominant 25/Baraitser-Winter syndrome 2	10/560	AD
ADCYL	Desfness, autosomal recessive 44	101072	AR
AVERVI	Usher syndrometype 2C	602851	AR
AWIMI	Auditory neuropathy, x-linked 1/Dealiness, X-linked 5	3001(7)	XIR
ALAST	Alström syndrome	606844	AR
AMMECR1	Midlace hypoplasia, hearing impairment, elliptocytosis, and nephrocalcinosis	300175	XIR
ANICH	Carriometaphyseal dysplacia	605145	AD
ATP282	Desfress, autosomal dominant"	106733	AD
ATPOVDA4	Renal tubular acidosis, distal, 3, with or without sensorineural hearing loss	605239	AR
ATPGV181	Renal tubular acidesis, distal, 2, with progressive sensorine unal hearing loss	192132	AR I
ATPOV 181	Deafness, Congenital, with Onychodystrophy, autosomal dominant (DDOD syndrome)	6067170	AD
HIPOP III2 BCS11	Dearness, congeninai, with o nychodysirophy, autosomai adminiant (DUOD synarome) Biomstad syndrome	60647	AR
BDP1	opursual synutome Desfness, autosomal recessive 112	607012	AR.
8903		606412	
	Deafness, autosomal recessive 73/Battler syndrome type 44.		
87D	Biotinidase deliciency	602012)	AR
CA 8472	Deafness, autosomal recessive 93	607314	AR .
CACNAID	Sinoatrial node dysfunction and dealiness (SANDD)	114206	AR
താന	Deafness, autosomal dominant 44	GEIDSI	AD
CD 164	Desilness, autosomal dominant 66	601356	AD
CDC14A	Deafness, autosomal recessive 105/Deafness, autosomal recessive 32/Hearing impairment infertile male	60504	AR
	syndirome		
00H23	Deafness, autosomal recessive 12/Usher syndrome type 1D	602536	AR
(EACAM16	Dealness, autosomal dominant 48/Dealness, autosomal recessive 113	614531	AD/AR
ŒP78	Cone-rod dystrophy and hearing loss 1	617110	AR
CHD7	CHARGE syndrome	GORRENZ	AD
04571	Tentany presiál brachydactyly syndrome	608183	AR
082	Distiness autosomal recessive 48	60564	AR
0912	Wolfram syndrome 2	61507	AR
Q DN14	Destiness, autosomal recessive 29	GOSEGR	AR
0.089	Deafness, autosomal recessive*	6579	AR
a KS	Desfness, autosomal recessive 103	607298	AR
Q.PP	Penault syndrome type 3	601119	AR
Q RN1	Usher syndrometype 3A	606817	AR
ma	Deafness, autosomal dominant 9/Deafness, autosomal recessive 110	608196	AD/AR
CULITAT	Deafness, autosomal dominant 37/Stickler syndrome type 2/Marshall syndrome	1/0/90	AD
COLLIA2	Destrues, autosomal normanne szyanciael synanome type zynanistrali synanome Desfress, autosomal recessive 53/Deafress, autosomal dominant 13/Stickler syndrome type	120290	AD/AR
WEILINE .	peantes, avoidanta recesare supremies, avoid nationalian cupoticos ynatorie type 3/Otospondylomegaepiphysiai dioplazia, autosonal dominant/Otospondylomegaepiphysiai dioplazia, autosonal recessive	THE N	nuy nus
CO12A1	Sickler androme 1	120140	AD
001444.3	Alport syndrome 2, autosomal recessive/Alport syndrome 3, autosomal dominant	120070	AD/AR
001444	Alport syndrome 2, autosomal recessive	120131	AR
0014445	Alport syndrome 1, X-linked	303630	XID
0014446	Destiness, X-linked 6	REGRI	XIR
101901	Slickler syndrome 4	120210	AR.
001942	Stickler androme 5	1/0/60	AR
001943	Stickler syndrome	120260	AR
GRYM	Destruct granterer. Destructs autocorreal dominant 40	173740	AD
DCAF17	Woodhouse-Sakati syndrome	612515	AR
DCDC2	Deafness, autosomal recessive 66	605795	AR .
DIABLO	Dealmess, autosomal recessive on Dealmess, autosomal dominant 64	60521P)	AD.
DAPH1	Dealness, autosomal dominant 0, with or without thrombocytopenia	602121	AD
DIAPHS	Desimess, autosomal dominant 1, www.or.www.out.wrombocytopenia Auditory neuropathy, autosomal dominant, 1	60/101	AD
0AP103 0135		600028	AD/AR
	Split-hand/foot mallormation 1 with sensorine wal hearing loss		
DMD8.2	Deafness, autosomal dominant 71	612186	AD
DNMTI	Cerebeliar ataxia, dealiness, and narcolepsy, autosomal dominant/Neuropathy, hereditary sensory, type 1E (DWWT1-methylopathics)		AD
115PP	Destness, autosomal dominant 39 with dentinogenesis impedienta	125485	AD .

Single Gene/Targeted Panels

- GJB2
- Pendred, Ushers

Comprehensive hearing-loss panels 120-220 genes

- Targeted capture/massively parallel sequencing
- Deletion/duplication analysis
- Copy number analysis

Otoscope (U of Iowa) GeneDx Invitae Multiple others

Cheek swab or blood test

Any cause identified

Specific genes/variants

Genetic counseling, education, acceptance

Hearing expectations: progression, ototoxicity, cochlear implant outcomes

Future management options

Syndromic association identified

Cochlear implantation, gene therapy

Early screening for associated differences

Any cause identified

Specific genes/variants

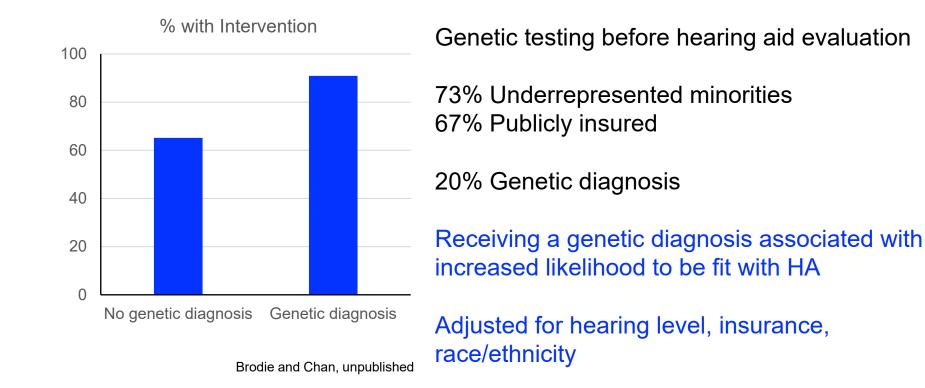
Genetic counseling, education, acceptance

Hearing expectations: progression, ototoxicity, cochlear implant outcomes

Future management options

Cochlear implantation, gene therapy

Syndromic association identified


Early screening for associated differences

111 children with SNHL

Any cause identified

Specific genes/variants

Genetic counseling, education, acceptance

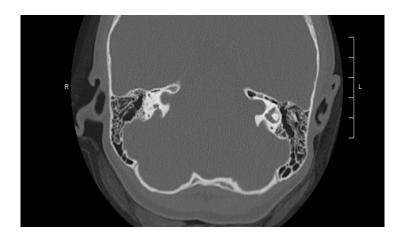
Hearing expectations: progression, ototoxicity, cochlear implant outcomes

Future management options

Cochlear implantation, gene therapy

Syndromic association identified

Early screening for associated differences



Genetic Testing Progressive Hearing Loss

SLC26A4 TECTA Taperin Mir95

(Mostly) Non-progressive

GJB2 STRC OTOG

Genetic Testing Management Outcomes

Auditory Neuropathy Spectrum Disorder (ANSD)

Highly variable presentation and outcomes

Common etiologies:

1) Cochlear nerve deficiency

Poor cochlear implant outcomes Recommend ASL

2) Otoferlin variants (hair cell/neuron synapses)

Excellent cochlear implant outcomes Impending gene therapy

Any cause identified

Specific genes/variants

Genetic counseling, education, acceptance

Hearing expectations: progression, ototoxicity, cochlear implant outcomes

Future management options

Cochlear implantation, gene therapy

Syndromic association identified

Early screening for associated differences

Genetic Testing Syndromic Discovery

SLC26A4PendreCDH23, Myo7a, USH2A...UsherCOL11A1, COL11A2...StickleCOL4A3, COL4A4...AlportSTRC/CATSPERDeafneEDN3, MITF, PAX3...WaardEYA1, SIX5BranchGATA3Baraka

Pendred Usher Stickler Alport Deafness/infertility Waardenburg Branchio-oto-renal Barakat

~3-5% of hearing-loss gene panels reveal a previously-unrecognized syndromic association

Genetic testing in children who are D/HH: looking beyond the ear

- Genetic testing alone does not replace the importance of an evaluation by a clinical geneticist
- Importance of dysmorphology: recognition of syndromes associated with hearing differences
- Among children who are Deaf/HH with an intellectual disability or autism spectrum disorder, we should not stop our genetic work-up at the level of the ear

Genetic testing in children who are D/HH: looking beyond the ear

- Broader genetic evaluation, following the standard of care for work-up of developmental disabilities is important to remember
 - 3 generation family history, dysmorphology,
 - microarray, Fragile X, PTEN (macrocephaly), MECP2 (in girls), expanded genetic panels
 - Recognition of multiple congenital anomalies
 - Technology and knowledge is ever changing!

Consensus Statement: Chromosomal Microarray Is a First-Tier Clinical Diagnostic Test for Individuals with Developmental Disabilities or Congenital Anomalies

David T. Miller,^{1,*} Margaret P. Adam,^{2,3} Swaroop Aradhya,⁴ Leslie G. Biesecker,⁵ Arthur R. Brothman,⁶ Nigel P. Carter,⁷ Deanna M. Church,⁸ John A. Crolla,⁹ Evan E. Eichler,¹⁰ Charles J. Epstein,¹¹ W. Andrew Faucett,² Lars Feuk,¹² Jan M. Friedman,¹³ Ada Hamosh,¹⁴ Laird Jackson,¹⁵ Erin B. Kaminsky,² Klaas Kok,¹⁶ Ian D. Krantz,¹⁷ Robert M. Kuhn,¹⁸ Charles Lee,¹⁹ James M. Ostell,⁸ Carla Rosenberg,²⁰ Stephen W. Scherer,²¹ Nancy B. Spinner,¹⁷ Dimitri J. Stavropoulos,²² James H. Tepperberg,²³ Erik C. Thorland,²⁴ Joris R. Vermeesch,²⁵ Darrel J. Waggoner,²⁶ Michael S. Watson,²⁷ Christa Lese Martin,² and David H. Ledbetter^{2,*}

Original Investigation

Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder

Kristina Tammimies, PhD; Christian R. Marshall, PhD; Susan Walker, PhD; Gaganjot Kaur, MRes; Bhooma Thiruvahindrapuram, MSc; Anath C. Lionel, PhD; Ryan K. C. Yuen, PhD; Mohammed Uddin, PhD; Wendy Roberts, MD; Rosanna Weicberg, MD-PhD; Marc Woodbury-Smith, MD-PhD; Lonnie Zwaigenbaum, MD; Evddika Anagnostou, MD; Zhuzoli Wang, PhD; John Wei, PhD; Jennifer L. Howe; Matthew J. Gazzellone, RSc; Lynette Lau, MSc; Wilson W. L. Sung, MSc; Kathy Whitten; Cathy Vardy, MD; Victoria Crosbie, MD; Brian Tsang, BSc; Lia D'Abate, BSc; Winnie W. L. Tong; Sandra Luscombe, MD; Tyan Doyle, MD; Meissa T. Carter, MD; Peter Szatmari, MD; Susan Stuckless, PhD; Daniele Merico, PhD; Dimitri J. Staropoulos, PhD; Stephen W. Scherer, PhD; Bridget A. Fernandez, MD

The American Journal of Human Genetics 2010

86.749-764

Impact of Genetic Knowledge on the management of children who are D/HH: broad-based genetic testing

- Goals of understanding genetic etiology:
- Recurrence risk for the individual, parents, siblings
- Associated medical conditions that may have been unrecognized

Case Studies

- a. Non-syndromic SNHL (GJB2) Dylan
- b. Syndromic SNHL (Usher syndrome) Dylan
- c. Developmental delay + SNHL Susan

Case 1: CC

	LEFT EAR (dBeHL)	RIGHT EAR (dBeHL)
500 Hz tone burst ABR	15	15
1000 Hz tone burst ABR	15	30
2000 Hz tone burst ABR	15	35
4000 Hz tone burst ABR	15	25

2 mo old M Full term CMV negative Club foot No FH of hearing loss

Family uncertain of ABR findings Declined Early Start and amplification

Case 1: CC

	LEFT EAR (dBeHL)	RIGHT EAR (dBeHL)
500 Hz tone burst ABR	15	15
1000 Hz tone burst ABR	15	30
2000 Hz tone burst ABR	15	35
4000 Hz tone burst ABR	15	25

2 mo old M Full term CMV negative Club foot No FH of hearing loss

Family uncertain of ABR findings Declined Early Start and amplification

Result(s): POSITIVE

GENE	MODE OF INHERITANCE	VARIANT	ZYGOSITY	CLASSIFICATION
GJB2	Autosomal dominant, Autosomal recessive	c.109 G>A p.(V37I)	Homozygous	Pathogenic Variant

Case 1: CC

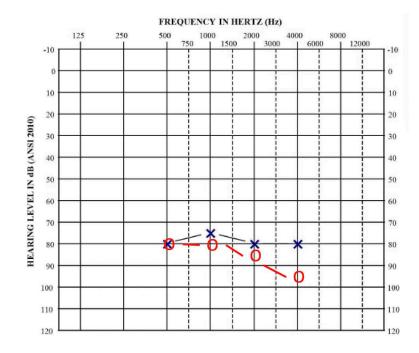
	LEFT EAR (dBeHL)	RIGHT EAR (dBeHL)
500 Hz tone burst ABR	15	15
1000 Hz tone burst ABR	15	30
2000 Hz tone burst ABR	15	35
4000 Hz tone burst ABR	15	25

Result(s): POSITIVE

GENE	MODE OF INHERITANCE	VARIANT	ZYGOSITY	CLASSIFICATION
GJB2	Autosomal dominant, Autosomal recessive	c.109 G>A p.(V37I)	Homozygous	Pathogenic Variant

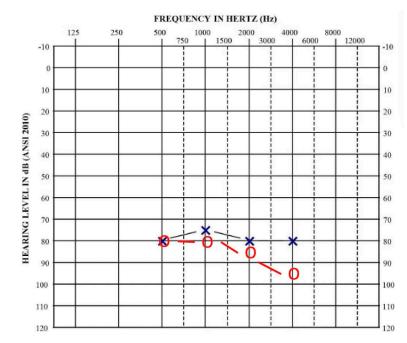
2 mo old M Full term CMV negative Club foot No FH of hearing loss

Family uncertain of ABR findings Declined Early Start and amplification


Genetics corroborates ABR Rules out syndromic association

Enrolled in Early Start Fit with R hearing aid

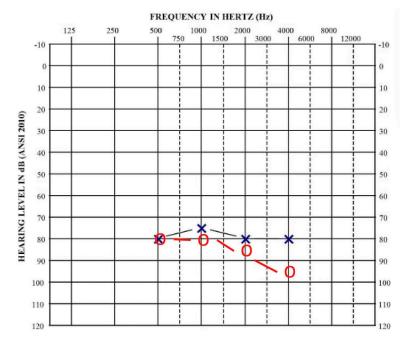
Case 2: LP



3 wk old F Full term CMV negative MRI normal Otherwise healthy No FH of hearing loss

LP: Genetic Testing

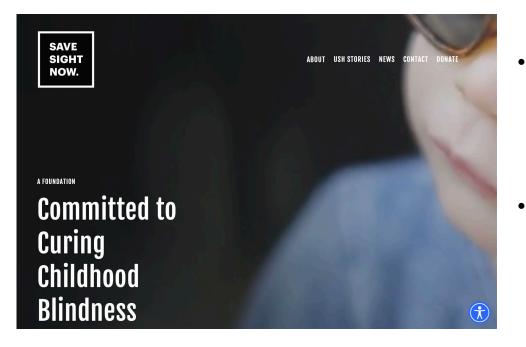
3 wk old F Full term CMV negative MRI normal Otherwise healthy No FH of hearing loss


POSITIVE

Gene	Coding DNA	Variant	Zygosity	Classification
MYO7A	c.494 C>T	p.Thr165Met (T165M)	Heterozygous	Pathogenic Variant
MYO7A	c.321_322insA	p.Tyr108IlefsX32 (Y108IfsX32)	Heterozygous	Pathogenic Variant

LP: Genetic Testing Myo7A

- NS-SNHL (DFNB2)
- Usher1B
- c.494 C>T: Usher1B
- c.321_322insA: unknown
- Parental testing confirms *trans*
- Ophthalmology referral
 - Normal ophtho exam
 - EUA: retinal dystrophy, maculopathy


POSITIVE

Gene	Coding DNA	Variant	Zygosity	Classification
MYO7A	c.494 C>T	p.Thr165Met (T165M)	Heterozygous	Pathogenic Variant
MYO7A	c.321_322insA	p.Tyr108IlefsX32 (Y108IfsX32)	Heterozygous	Pathogenic Variant

LP: Genetic Testing Myo7A

Genetic Testing Leading to Early Identification of Childhood Ocular Manifestations of Usher Syndrome

Kara D. Brodie, MD, MPhil ©; Anthony T. Moore, BM, BCh, FMedSci; Anne M. Slavotinek, MBBS, PhD; Anna K. Meyer, MD; Garani S. Nadaraja, MD; David E. Conrad, MD; Jacqueline E. Weinstein, MD; Dylan K. Chan, MD, PhD

- Bilateral cochlear implantation
 - 6 months
 - Age-appropriate speech & language
- Ophthalmologic monitoring
 - Gene therapy (Sanofi NCT01505062)

Case study 3:

- First CI at 18 months and 2nd at 3 years
- Age of diagnosis of ID: 4 years of age:
 - Leiter score of 60, Vineland score of 58
- Age of diagnosis of ASD: 7 years of age
 - Evaluation at 4 years, thought to be related to ID rather than ASD, at 7 years, diagnosed with ASD
- Age of Usher Syndrome genetic finding: 10 years of age
 - An ERG at 10 years of age: evidence of early rod-cone degeneration but no functional impairment
 - At 18 years, has not had notable functional vision loss
- At of first seizure: 18 years of age

Case study 3:

- 5 years of age:
 - **Microarray results**: extra chromosomal material on 10q11.21
 - This region contains no known genes associated with pathology. Thought to most likely a benign copy number variant.
- 10 years of age:
 - Fragile X testing: Pre-mutation for Fragile X (CGG repeat size 56)
 - Hearing gene panel: genetically confirmed MYO7A gene, compound heterozygote(both parents confirmed to be carriers
- 13 years of age
 - Autism/ID expanded panel negative

MDPI -

Revieu

Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS): Pathophysiology and Clinical Implications

Ana Maria Cabal-Herrera ^{1,2}, Nattaporn Tassanakijpanich ^{1,3}, Maria Jimena Salcedo-Arellano ^{1,4} and Randi J. Hagerman ^{1,4,*}

Pediatrics. 2017 June ; 139(Suppl 3): S172–S182. doi:10.1542/peds.2016-1159D.

Implications of the *FMR1* Premutation for Children, Adolescents, Adults, and Their Families

Anne Wheeler, PhD^a, Melissa Raspa, PhD^a, Randi Hagerman, MD^b, Marsha Mailick, PhD^c, and Catharine Riley, PhD, MPH^d

Children don't always follow what's in the books

RESEARCH REPORT

Hiding in plain sight: genetic deaf-blindness is not always Usher syndrome

Genevieve Medina,¹ Julia Perry,¹ Andrea Oza,^{2,3} and Margaret Kenna^{1,4}

Dammeyer Behavioral and Brain Functions 2012, 8:16 http://www.behavioralandbrainfunctions.com/content/8/1/16

RESEARCH

Open Access

Children with Usher syndrome: mental and behavioral disorders

Jesper Dammeyer^{1,2}

Abstract

Background: Mental and behavioral disorders among adults with Usher syndrome have been discussed and reported in some case studies but no research has been reported on children with Usher syndrome.

Methods: This article investigates the prevalence and characteristics of mental and behavioral disorders among 26 children, 3-17 years of age, with Usher syndrome.

Results: Six of the 26 children were diagnosed with a mental or behavioral disorder (1 with schizophrenia and mild mental retardation, 1 with atypical autism and severe mental retardation, 1 with atypical autism and mild mental retardation, 1 with mild mental retardation, and 2 with conduct disorder). Another 3 children had had a mental or behavioral disorder previously in their childhood.

Conclusion: Even though vision impairment first manifests in late childhood, some children with Usher syndrome seem to develop mental and behavioral disorders during childhood. The aetiology and treatment of mental and behavioral disorders among children with Usher syndrome are discussed. Children with Usher syndrome and their parents may need clinical support during early childhood to prevent development of mental and behavioral disorders.

Keywords: Deafblindness, Dual sensory loss, Mental and behavioral disorders, Usher syndrome, Psychiatry

© 2007 Wiley-Liss, Inc.

American Journal of Medical Genetics Part A 143A:1560-1566 (2007)

Additional Clinical Manifestations in Children With Sensorineural Hearing Loss and Biallelic *GJB2* Mutations: Who Should Be Offered *GJB2* Testing?

Margaret A. Kenna,^{1,2}* Heidi L. Rehm,^{1,3} Caroline D. Robson,⁴ Anna Frangulov,¹ Jennifer McCallum,⁵ Dinah Yaeger,⁵ and Ian D. Krantz^{5,6}

Case study 3

Etiology may or may not be related to other disabilities

Etiology <u>may not protect</u> a child from other reasons for developmental conditions

Just a few examples from my clinical experiences:

- Branchio-oto-renal and XXYY
- GJB2 and Beckwith-Weidemann syndrome (associated with increased risk of tumor)
- GJB2 and Landau-Kleffner syndrome
- GJB and Branchio-oto-renal

"A dog that itches can have ticks and fleas"

