

Early Auditory Deprivation: Auditory Neuroscience and Listening and Spoken Language Outcomes

Jace Wolfe, Ph.D. March 19th, 2024

Road Map

- **<u>Primary Objective</u>**: Discuss the impact of early auditory deprivation on auditory brain development and listening and spoken language outcomes
- Brief overview of anatomy and physiology of the auditory brain
- Auditory neuroscience
 - Effects of hearing loss on auditory brain physiology
 - Andrej Kral's research on auditory deprivation
 - Listening and spoken language and beyond
- Shoot for the moon!

Back in Time..

2000

Audiologist: Jace Wolfe Circa 2000

Peter's Story

Shooting for the Moon!

Early auditory deprivation places excellent listening and spoken language outcomes at risk!

The Lobes of the Brain

The Auditory Brain

Primary Auditory Cortex

Auditory Nervous System

Talking Point: "Bottom-up" auditory signals from the ears eventually arrive at the contralateral **primary auditory cortex**, for everyone.

nucleus

foundation

ARING FIRST

The Auditory Brain

Association Auditory Areas

OBERKOTTER *foundation*

HEARING FIRST Powering Potential

Auditory Cortex

Talking Point: Secondary auditory cortex serves as the **<u>bridge</u>** for sound to be **<u>shared and integrated</u>** with the rest of the brain.

OBERKOTTER foundation

HEARING FIRST

Auditory Cortex

Secondary and association auditory areas possesses pluripotent neurons, which are capable of processing multi-modal stimuli

Talking Point: Secondary auditory cortex serves as the **<u>bridge</u>** for sound to be **<u>shared and integrated</u>** with the rest of the brain.

OBERKOTTER foundation

IEARING FIRST

The Listening Brain

Talking Point: Fundamentally, everything that comes into our minds is reduced to **patterns of neural activities**.

The Listening Brain

OBERKOTTER foundation

Exploring the World Through Listening

Exploring the World Through Listening

Hierarchical Processing

Matchin & Hickok, 2020

Matchin & Hickok, 2020

23

Matchin & Hickok, 2020

25

Matchin & Hickok, 2020

de Heer et al., 2017

- The adult brain weighs about 1200-1400 grams
- At birth, each neuron has about 2500 synapses (250 trillion synapses)
 - Between 2-3 years of age, each neuron has 15,000-20,000 synapses
 - 1.5 to 2 quadrillion neurons
 - Older children & adults have about 10,000 synapses per neuron
 - 1 quadrillion neurons

Synaptogenesis and Pruning

Synaptogenesis and Pruning

• Cells that fire together, wire together

Cells that fire out of sync, lose their link
Use it or lose it!

Talking Point: <u>Synaptogenesis</u> refers to the process by which a neuron develops new and stronger synapses, whereas <u>pruning</u> refers to the elimination of neuronal processes that are not being stimulated in <u>synchrony</u> with nearby neurons.

• At birth, each neuron has about 2500 synapses (250 trillion synapses)

- Between 2-3 years of age, each neuron has 15,000-20,000 synapses
 - 1.5 to 2 quadrillion neurons
- Older children & adults have about 10,000 synapses per neuron
 - 1 quadrillion neurons

Synaptogenesis and Pruning

Peter Huttenlocher, 1990

Barbie

Experience-Dependent Auditory Brain Development

The Neocortex

Cortical Layers

Feedforward and Feedback

Cortical Layers & Feedback Loops

Cortical Layers & Feedback Loops

Landmark Studies of Auditory Brain **Development**

Green et al., 2005

- Measured PET scan while post-lingually deafened adult implant users listened to a story.
- Showed activation of right and left primary and association auditory areas.

Talking Point: The typical listening brain shows bilateral activation of the **primary** and **secondary auditory cortex**.

Nishimura et al., 1999

- Objective
 - Used PET to evaluate areas of brain that are active in prelingually deafened adults who use ASL.

- Two Experiments:
 - Primary: Evaluate PET in response to sign language on video
 - Secondary: Evaluate PET to "meaningless hand movement" and to recorded spoken language after receipt of CI.

Nishimura et al., 1999

Blue: Areas activated by visual stimuli (meaningless hand movement)

Yellow: Areas activated by sign language

Green: Areas activated by spoken language (CI: Left Ear)

Blue: Areas activated by visual stimuli (meaningless hand movement)

Yellow: Areas activated by sign language

Green: Areas activated by spoken language (CI: Left Ear)

Conclusions:

The primary auditory cortex is reserved for hearing sound
→ "Cross-modal non-plasticity"

Talking Point: <u>Auditory deprivation</u> causes pruning of the synapses between primary auditory cortex and higher order auditory cortical areas. <u>Sign Language</u> does NOT protect or develop auditory synapses!

Kral's Cats

Used microelectrodes to record local cortical auditory potentials in NH and congenitally deaf cats with and without cochlear implants

Kral et al., 2000

Kral et al., 2000

Talking Point: Kral's cats showed a decoupling between the **infragranular and supragranular layers** of the auditory cortex.

5	۰۵ <u> </u>									Ω <u> </u>			u:									
	10	20	30	40	50	10	20	30	40	50		10	20	30	40	50		10	20	30	40	50
					Time [ms]					Time [ms]						Time [ms]						Time (ms)

Kral's Cats

Kral's Cats

Cortical Layers & Feedback Loops

Cortical Layers & Feedback Loops

Primary Auditory Cortex

Talking Point: Kral's cats also showed an elimination of the **top-down feedback loop** necessary for neural entrainment and the match necessary for perception/comprehension of an auditory message and excellent LSL development.

Eat

The Auditory Brain

Neuroscience of Literacy

HEARING FIRST

vering Potentia

Hearing Loss is an Emergency and Every Day is Critical!

Dettman et al., 2016 Otology & Neurotology

Long-term Communication Outcomes for Children Receiving Cochlear Implants Younger Than 12 Months: A Multicenter Study

*Shani Joy Dettman, *Richard Charles Dowell, †Dawn Choo, ‡Wendy Arnott, §Yetta Abrahams, §Aleisha Davis, ‡Dimity Dornan, ||Jaime Leigh, ‡Gabriella Constantinescu, ¶Robert Cowan, and #Robert J. Briggs

e86

S. J. DETTMAN ET AL.

TABLE 1.	Demographic details for $n = 403$ children who received CIs younger than 6 years, divided for age at implant; Group 1	1
	(<12 mo), Group 2 (13–18 mo), Group 3 (19–24 mo), Group 4 (25-42 mo), and Group 5 (43–72 mo)	

Group	No.	Percent/ n=403	Mean (yrs)	Range (yrs)	SD (yrs)		
1. <12 m	151	37.5%	0.70	0.38-1.00	0.15		
2. 13-18 m	61	15.1%	1.24	1.02 - 1.47	0.14		
3. 19-24 m	66	16.4%	1.75	1.50 - 2.00	0.13		
4. 25–42 m	82	20.3%	2.60	2.01-3.45	0.43		
5. 43–72 m	43	10.7%	4.45	3.58-5.81	0.69		

m indicates months; No., number; SD, standard deviation; yrs, years.

Spoken Language Vocabulary

1: <12mths

2: 13-18mths

3: 19-24mths 4: 25-42mths

5: 43-72mths

FIG.5. PPVT standard scores for n = 207 at school entry; children with cognitive skill within the normal range (circles) and children with additional diagnosis of cognitive delay/impairment (diamonds).

Peabody Picture Vocabulary Test 3rd and 4th Editions

Language Rich Listening Environment

Beyond the 30-Million-Word Gap: Children's Conversational Exposure Is Associated With Language-Related Brain Function Psychological Science 2018, Vol. 29(5) 700-710 © The Author(s) 2018 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1177/0956797617742725 www.psychologicalscience.org/PS

Rachel R. Romeo^{1,2}, Julia A. Leonard^{2,3}, Sydney T. Robinson^{2,3}, Martin R. West⁴, Allyson P. Mackey^{2,3,5}, Meredith L. Rowe⁴, and

🚹 🔁

Optimizing Listening, Spoken Language, & Literacy Development

- Provide optimized hearing technology as early as possible!
- Coach and support families to create a language-rich listening environment
 - 46 million words by 4 years of age (Hart & Risley, 1995)
 - 20,000 hours of listening to promote literacy development (Dehaene, 2009)
- Immerse children with hearing loss in least restrictive environment replete with intelligible speech

Talking Point:

Want Great LSL Outcomes?

Prioritize Hearing First!

 <u>Great</u> outcomes are <u>probable</u> when we do what it takes.

Shoot for the moon!